Введите задачу...
Математический анализ Примеры
Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Этап 2.1
Применим формулу тройного угла для синуса.
Этап 2.2
Используем формулу двойного угла для преобразования в .
Этап 2.3
Применим свойство дистрибутивности.
Этап 2.4
Умножим на .
Этап 2.5
Умножим на .
Этап 3
Этап 3.1
Изменим порядок членов.
Этап 3.2
Разложим на множители, используя теорему о рациональных корнях.
Этап 3.2.1
Если у многочленной функции целые коэффициенты, то каждый рациональный ноль будет иметь вид , где — делитель константы, а — делитель старшего коэффициента.
Этап 3.2.2
Найдем все комбинации . Это ― возможные корни многочлена.
Этап 3.2.3
Подставим и упростим выражение. В этом случае выражение равно , поэтому является корнем многочлена.
Этап 3.2.3.1
Подставим в многочлен.
Этап 3.2.3.2
Возведем в степень .
Этап 3.2.3.3
Умножим на .
Этап 3.2.3.4
Возведем в степень .
Этап 3.2.3.5
Умножим на .
Этап 3.2.3.6
Добавим и .
Этап 3.2.3.7
Умножим на .
Этап 3.2.3.8
Добавим и .
Этап 3.2.3.9
Вычтем из .
Этап 3.2.4
Поскольку — известный корень, разделим многочлен на , чтобы найти частное многочленов. Этот многочлен можно будет использовать, чтобы найти оставшиеся корни.
Этап 3.2.5
Разделим на .
Этап 3.2.5.1
Подготовим многочлены к делению. Если слагаемые представляют не все экспоненты, добавим отсутствующий член со значением .
- | - | + | + | - |
Этап 3.2.5.2
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
- | |||||||||||
- | - | + | + | - |
Этап 3.2.5.3
Умножим новое частное на делитель.
- | |||||||||||
- | - | + | + | - | |||||||
- | + |
Этап 3.2.5.4
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
- | |||||||||||
- | - | + | + | - | |||||||
+ | - |
Этап 3.2.5.5
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
- | |||||||||||
- | - | + | + | - | |||||||
+ | - | ||||||||||
- |
Этап 3.2.5.6
Вынесем следующие члены из исходного делимого в текущее делимое.
- | |||||||||||
- | - | + | + | - | |||||||
+ | - | ||||||||||
- | + |
Этап 3.2.5.7
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
- | - | ||||||||||
- | - | + | + | - | |||||||
+ | - | ||||||||||
- | + |
Этап 3.2.5.8
Умножим новое частное на делитель.
- | - | ||||||||||
- | - | + | + | - | |||||||
+ | - | ||||||||||
- | + | ||||||||||
- | + |
Этап 3.2.5.9
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
- | - | ||||||||||
- | - | + | + | - | |||||||
+ | - | ||||||||||
- | + | ||||||||||
+ | - |
Этап 3.2.5.10
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
- | - | ||||||||||
- | - | + | + | - | |||||||
+ | - | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ |
Этап 3.2.5.11
Вынесем следующие члены из исходного делимого в текущее делимое.
- | - | ||||||||||
- | - | + | + | - | |||||||
+ | - | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - |
Этап 3.2.5.12
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
- | - | + | |||||||||
- | - | + | + | - | |||||||
+ | - | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - |
Этап 3.2.5.13
Умножим новое частное на делитель.
- | - | + | |||||||||
- | - | + | + | - | |||||||
+ | - | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - | ||||||||||
+ | - |
Этап 3.2.5.14
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
- | - | + | |||||||||
- | - | + | + | - | |||||||
+ | - | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + |
Этап 3.2.5.15
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
- | - | + | |||||||||
- | - | + | + | - | |||||||
+ | - | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
Этап 3.2.5.16
Поскольку остаток равен , окончательным ответом является частное.
Этап 3.2.6
Запишем в виде набора множителей.
Этап 4
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 5
Этап 5.1
Приравняем к .
Этап 5.2
Решим относительно .
Этап 5.2.1
Добавим к обеим частям уравнения.
Этап 5.2.2
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 5.2.3
Упростим правую часть.
Этап 5.2.3.1
Точное значение : .
Этап 5.2.4
Функция синуса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
Этап 5.2.5
Упростим .
Этап 5.2.5.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 5.2.5.2
Объединим дроби.
Этап 5.2.5.2.1
Объединим и .
Этап 5.2.5.2.2
Объединим числители над общим знаменателем.
Этап 5.2.5.3
Упростим числитель.
Этап 5.2.5.3.1
Перенесем влево от .
Этап 5.2.5.3.2
Вычтем из .
Этап 5.2.6
Найдем период .
Этап 5.2.6.1
Период функции можно вычислить по формуле .
Этап 5.2.6.2
Заменим на в формуле периода.
Этап 5.2.6.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 5.2.6.4
Разделим на .
Этап 5.2.7
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
, для любого целого
Этап 6
Этап 6.1
Приравняем к .
Этап 6.2
Решим относительно .
Этап 6.2.1
Подставим вместо .
Этап 6.2.2
Используем формулу для нахождения корней квадратного уравнения.
Этап 6.2.3
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 6.2.4
Упростим.
Этап 6.2.4.1
Упростим числитель.
Этап 6.2.4.1.1
Возведем в степень .
Этап 6.2.4.1.2
Умножим .
Этап 6.2.4.1.2.1
Умножим на .
Этап 6.2.4.1.2.2
Умножим на .
Этап 6.2.4.1.3
Добавим и .
Этап 6.2.4.1.4
Перепишем в виде .
Этап 6.2.4.1.4.1
Вынесем множитель из .
Этап 6.2.4.1.4.2
Перепишем в виде .
Этап 6.2.4.1.5
Вынесем члены из-под знака корня.
Этап 6.2.4.2
Умножим на .
Этап 6.2.4.3
Упростим .
Этап 6.2.4.4
Вынесем знак минуса перед дробью.
Этап 6.2.5
Окончательный ответ является комбинацией обоих решений.
Этап 6.2.6
Подставим вместо .
Этап 6.2.7
Выпишем каждое выражение, чтобы найти решение для .
Этап 6.2.8
Решим относительно в .
Этап 6.2.8.1
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 6.2.8.2
Упростим правую часть.
Этап 6.2.8.2.1
Найдем значение .
Этап 6.2.8.3
Функция синуса отрицательна в третьем и четвертом квадрантах. Для нахождения второго решения вычтем решение из , чтобы найти угол приведения. Затем добавим этот угол приведения к и найдем решение в третьем квадранте.
Этап 6.2.8.4
Упростим выражение, чтобы найти второе решение.
Этап 6.2.8.4.1
Вычтем из .
Этап 6.2.8.4.2
Результирующий угол является положительным, меньшим и отличается от на полный оборот.
Этап 6.2.8.5
Найдем период .
Этап 6.2.8.5.1
Период функции можно вычислить по формуле .
Этап 6.2.8.5.2
Заменим на в формуле периода.
Этап 6.2.8.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 6.2.8.5.4
Разделим на .
Этап 6.2.8.6
Добавим к каждому отрицательному углу, чтобы получить положительные углы.
Этап 6.2.8.6.1
Добавим к , чтобы найти положительный угол.
Этап 6.2.8.6.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 6.2.8.6.3
Объединим дроби.
Этап 6.2.8.6.3.1
Объединим и .
Этап 6.2.8.6.3.2
Объединим числители над общим знаменателем.
Этап 6.2.8.6.4
Упростим числитель.
Этап 6.2.8.6.4.1
Умножим на .
Этап 6.2.8.6.4.2
Вычтем из .
Этап 6.2.8.6.5
Перечислим новые углы.
Этап 6.2.8.7
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
Этап 6.2.9
Решим относительно в .
Этап 6.2.9.1
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 6.2.9.2
Упростим правую часть.
Этап 6.2.9.2.1
Найдем значение .
Этап 6.2.9.3
Функция синуса отрицательна в третьем и четвертом квадрантах. Для нахождения второго решения вычтем решение из , чтобы найти угол приведения. Затем добавим этот угол приведения к и найдем решение в третьем квадранте.
Этап 6.2.9.4
Упростим выражение, чтобы найти второе решение.
Этап 6.2.9.4.1
Вычтем из .
Этап 6.2.9.4.2
Результирующий угол является положительным, меньшим и отличается от на полный оборот.
Этап 6.2.9.5
Найдем период .
Этап 6.2.9.5.1
Период функции можно вычислить по формуле .
Этап 6.2.9.5.2
Заменим на в формуле периода.
Этап 6.2.9.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 6.2.9.5.4
Разделим на .
Этап 6.2.9.6
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
Этап 6.2.10
Перечислим все решения.
, для любого целого
, для любого целого
, для любого целого
Этап 7
Окончательным решением являются все значения, при которых верно.
, для любого целого
Этап 8
Объединим ответы.
, для любого целого