Введите задачу...
Математический анализ Примеры
,
Этап 1
Этап 1.1
Подставим вместо .
Этап 1.2
Решим относительно .
Этап 1.2.1
Умножим на .
Этап 1.2.2
Упростим .
Этап 1.2.2.1
Сократим общий множитель .
Этап 1.2.2.1.1
Вынесем множитель из .
Этап 1.2.2.1.2
Сократим общий множитель.
Этап 1.2.2.1.3
Перепишем это выражение.
Этап 1.2.2.2
Точное значение : .
Этап 2
Этап 2.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 2.1.1
Чтобы применить цепное правило, зададим как .
Этап 2.1.2
Производная по равна .
Этап 2.1.3
Заменим все вхождения на .
Этап 2.2
Продифференцируем.
Этап 2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3
Упростим выражение.
Этап 2.2.3.1
Умножим на .
Этап 2.2.3.2
Перенесем влево от .
Этап 2.3
Найдем производную в .
Этап 2.4
Упростим.
Этап 2.4.1
Сократим общий множитель .
Этап 2.4.1.1
Вынесем множитель из .
Этап 2.4.1.2
Сократим общий множитель.
Этап 2.4.1.3
Перепишем это выражение.
Этап 2.4.2
Точное значение : .
Этап 2.4.3
Умножим на , сложив экспоненты.
Этап 2.4.3.1
Умножим на .
Этап 2.4.3.1.1
Возведем в степень .
Этап 2.4.3.1.2
Применим правило степени для объединения показателей.
Этап 2.4.3.2
Добавим и .
Этап 2.4.4
Возведем в степень .
Этап 3
Этап 3.1
Используем угловой коэффициент и координаты заданной точки вместо и в уравнении прямой с угловым коэффициентом и заданной точкой , выведенном из уравнения с угловым коэффициентом .
Этап 3.2
Упростим уравнение и оставим его в виде уравнения прямой с угловым коэффициентом и заданной точкой.
Этап 3.3
Решим относительно .
Этап 3.3.1
Упростим .
Этап 3.3.1.1
Перепишем.
Этап 3.3.1.2
Упростим путем добавления нулей.
Этап 3.3.1.3
Применим свойство дистрибутивности.
Этап 3.3.1.4
Сократим общий множитель .
Этап 3.3.1.4.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 3.3.1.4.2
Вынесем множитель из .
Этап 3.3.1.4.3
Вынесем множитель из .
Этап 3.3.1.4.4
Сократим общий множитель.
Этап 3.3.1.4.5
Перепишем это выражение.
Этап 3.3.1.5
Объединим и .
Этап 3.3.1.6
Упростим выражение.
Этап 3.3.1.6.1
Умножим на .
Этап 3.3.1.6.2
Вынесем знак минуса перед дробью.
Этап 3.3.2
Добавим к обеим частям уравнения.
Этап 3.3.3
Запишем в форме .
Этап 3.3.3.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3.3.3.2
Объединим и .
Этап 3.3.3.3
Объединим числители над общим знаменателем.
Этап 3.3.3.4
Перенесем влево от .
Этап 3.3.3.5
Вынесем множитель из .
Этап 3.3.3.6
Вынесем множитель из .
Этап 3.3.3.7
Вынесем множитель из .
Этап 3.3.3.8
Перепишем в виде .
Этап 3.3.3.9
Вынесем знак минуса перед дробью.
Этап 4