Введите задачу...
Математический анализ Примеры
,
Этап 1
Этап 1.1
Подставим вместо .
Этап 1.2
Решим относительно .
Этап 1.2.1
Избавимся от скобок.
Этап 1.2.2
Упростим .
Этап 1.2.2.1
Упростим числитель.
Этап 1.2.2.1.1
Умножим на .
Этап 1.2.2.1.2
Вычтем из .
Этап 1.2.2.2
Упростим знаменатель.
Этап 1.2.2.2.1
Умножим на .
Этап 1.2.2.2.2
Добавим и .
Этап 2
Этап 2.1
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 2.2
Продифференцируем.
Этап 2.2.1
По правилу суммы производная по имеет вид .
Этап 2.2.2
Поскольку является константой относительно , производная по равна .
Этап 2.2.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.4
Умножим на .
Этап 2.2.5
Поскольку является константой относительно , производная относительно равна .
Этап 2.2.6
Упростим выражение.
Этап 2.2.6.1
Добавим и .
Этап 2.2.6.2
Перенесем влево от .
Этап 2.2.7
По правилу суммы производная по имеет вид .
Этап 2.2.8
Поскольку является константой относительно , производная по равна .
Этап 2.2.9
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.10
Умножим на .
Этап 2.2.11
Поскольку является константой относительно , производная относительно равна .
Этап 2.2.12
Упростим выражение.
Этап 2.2.12.1
Добавим и .
Этап 2.2.12.2
Умножим на .
Этап 2.3
Упростим.
Этап 2.3.1
Применим свойство дистрибутивности.
Этап 2.3.2
Применим свойство дистрибутивности.
Этап 2.3.3
Упростим числитель.
Этап 2.3.3.1
Упростим каждый член.
Этап 2.3.3.1.1
Умножим на .
Этап 2.3.3.1.2
Умножим на .
Этап 2.3.3.1.3
Умножим на .
Этап 2.3.3.1.4
Умножим на .
Этап 2.3.3.2
Объединим противоположные члены в .
Этап 2.3.3.2.1
Вычтем из .
Этап 2.3.3.2.2
Добавим и .
Этап 2.3.3.3
Добавим и .
Этап 2.4
Найдем производную в .
Этап 2.5
Упростим знаменатель.
Этап 2.5.1
Умножим на .
Этап 2.5.2
Добавим и .
Этап 2.5.3
Возведем в степень .
Этап 3
Этап 3.1
Используем угловой коэффициент и координаты заданной точки вместо и в уравнении прямой с угловым коэффициентом и заданной точкой , выведенном из уравнения с угловым коэффициентом .
Этап 3.2
Упростим уравнение и оставим его в виде уравнения прямой с угловым коэффициентом и заданной точкой.
Этап 3.3
Решим относительно .
Этап 3.3.1
Упростим .
Этап 3.3.1.1
Перепишем.
Этап 3.3.1.2
Упростим путем добавления нулей.
Этап 3.3.1.3
Применим свойство дистрибутивности.
Этап 3.3.1.4
Объединим и .
Этап 3.3.1.5
Сократим общий множитель .
Этап 3.3.1.5.1
Вынесем множитель из .
Этап 3.3.1.5.2
Вынесем множитель из .
Этап 3.3.1.5.3
Сократим общий множитель.
Этап 3.3.1.5.4
Перепишем это выражение.
Этап 3.3.1.6
Объединим и .
Этап 3.3.1.7
Упростим выражение.
Этап 3.3.1.7.1
Умножим на .
Этап 3.3.1.7.2
Вынесем знак минуса перед дробью.
Этап 3.3.2
Перенесем все члены без в правую часть уравнения.
Этап 3.3.2.1
Добавим к обеим частям уравнения.
Этап 3.3.2.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3.3.2.3
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Этап 3.3.2.3.1
Умножим на .
Этап 3.3.2.3.2
Умножим на .
Этап 3.3.2.4
Объединим числители над общим знаменателем.
Этап 3.3.2.5
Упростим числитель.
Этап 3.3.2.5.1
Умножим на .
Этап 3.3.2.5.2
Добавим и .
Этап 3.3.3
Изменим порядок членов.
Этап 4