Введите задачу...
Математический анализ Примеры
,
Этап 1
Этап 1.1
Поскольку является константой относительно , производная по равна .
Этап 1.2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 1.3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 1.3.1
Чтобы применить цепное правило, зададим как .
Этап 1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.3
Заменим все вхождения на .
Этап 1.4
Продифференцируем.
Этап 1.4.1
По правилу суммы производная по имеет вид .
Этап 1.4.2
Поскольку является константой относительно , производная по равна .
Этап 1.4.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.4.4
Умножим на .
Этап 1.4.5
Поскольку является константой относительно , производная относительно равна .
Этап 1.4.6
Упростим выражение.
Этап 1.4.6.1
Добавим и .
Этап 1.4.6.2
Умножим на .
Этап 1.4.7
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.4.8
Перенесем влево от .
Этап 1.5
Упростим.
Этап 1.5.1
Применим свойство дистрибутивности.
Этап 1.5.2
Умножим на .
Этап 1.5.3
Умножим на .
Этап 1.5.4
Вынесем множитель из .
Этап 1.5.4.1
Вынесем множитель из .
Этап 1.5.4.2
Вынесем множитель из .
Этап 1.5.4.3
Вынесем множитель из .
Этап 1.5.5
Добавим и .
Этап 2
Заменим в этом выражении переменную на .
Этап 3
Умножим на .
Этап 4
Умножим на .
Этап 5
Добавим и .
Этап 6
Возведем в степень .
Этап 7
Умножим на .
Этап 8
Умножим на .
Этап 9
Добавим и .
Этап 10
Умножим на .