Математический анализ Примеры

Проверить непрерывность f(x)=1/(4-x^2)
Этап 1
Найдем область определения для проверки непрерывности выражения.
Нажмите для увеличения количества этапов...
Этап 1.1
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 1.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Вычтем из обеих частей уравнения.
Этап 1.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 1.2.2.1
Разделим каждый член на .
Этап 1.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.2.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 1.2.2.2.2
Разделим на .
Этап 1.2.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.2.3.1
Разделим на .
Этап 1.2.3
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 1.2.4
Упростим .
Нажмите для увеличения количества этапов...
Этап 1.2.4.1
Перепишем в виде .
Этап 1.2.4.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 1.2.5
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 1.2.5.1
Сначала с помощью положительного значения найдем первое решение.
Этап 1.2.5.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 1.2.5.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 1.3
Область определения ― это все значения , при которых выражение определено.
Интервальное представление:
Обозначение построения множества:
Интервальное представление:
Обозначение построения множества:
Этап 2
Поскольку область определения — это не все вещественные числа, не является непрерывной на множестве всех вещественных чисел.
Не является непрерывной
Этап 3