Математический анализ Примеры

Найти горизонтальную касательную y=2x^3+3x^2-12x+2
Этап 1
Примем как функцию .
Этап 2
Найдем производную.
Нажмите для увеличения количества этапов...
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3
Умножим на .
Этап 2.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.3
Умножим на .
Этап 2.4
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.4.1
Поскольку является константой относительно , производная по равна .
Этап 2.4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.4.3
Умножим на .
Этап 2.5
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 2.5.1
Поскольку является константой относительно , производная относительно равна .
Этап 2.5.2
Добавим и .
Этап 3
Приравняем производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 3.1
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 3.1.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 3.1.1.1
Вынесем множитель из .
Этап 3.1.1.2
Вынесем множитель из .
Этап 3.1.1.3
Вынесем множитель из .
Этап 3.1.1.4
Вынесем множитель из .
Этап 3.1.1.5
Вынесем множитель из .
Этап 3.1.2
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 3.1.2.1
Разложим на множители, используя метод группировки.
Нажмите для увеличения количества этапов...
Этап 3.1.2.1.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 3.1.2.1.2
Запишем разложение на множители, используя данные целые числа.
Этап 3.1.2.2
Избавимся от ненужных скобок.
Этап 3.2
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 3.3
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.3.1
Приравняем к .
Этап 3.3.2
Добавим к обеим частям уравнения.
Этап 3.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.4.1
Приравняем к .
Этап 3.4.2
Вычтем из обеих частей уравнения.
Этап 3.5
Окончательным решением являются все значения, при которых верно.
Этап 4
Решим исходную функцию в точке .
Нажмите для увеличения количества этапов...
Этап 4.1
Заменим в этом выражении переменную на .
Этап 4.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.2.1.1
Единица в любой степени равна единице.
Этап 4.2.1.2
Умножим на .
Этап 4.2.1.3
Единица в любой степени равна единице.
Этап 4.2.1.4
Умножим на .
Этап 4.2.1.5
Умножим на .
Этап 4.2.2
Упростим путем сложения и вычитания.
Нажмите для увеличения количества этапов...
Этап 4.2.2.1
Добавим и .
Этап 4.2.2.2
Вычтем из .
Этап 4.2.2.3
Добавим и .
Этап 4.2.3
Окончательный ответ: .
Этап 5
Решим исходную функцию в точке .
Нажмите для увеличения количества этапов...
Этап 5.1
Заменим в этом выражении переменную на .
Этап 5.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.2.1.1
Возведем в степень .
Этап 5.2.1.2
Умножим на .
Этап 5.2.1.3
Возведем в степень .
Этап 5.2.1.4
Умножим на .
Этап 5.2.1.5
Умножим на .
Этап 5.2.2
Упростим путем добавления чисел.
Нажмите для увеличения количества этапов...
Этап 5.2.2.1
Добавим и .
Этап 5.2.2.2
Добавим и .
Этап 5.2.2.3
Добавим и .
Этап 5.2.3
Окончательный ответ: .
Этап 6
Горизонтальные касательные функции  ― .
Этап 7