Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Поскольку является константой относительно , производная по равна .
Этап 1.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 1.2.1
Чтобы применить цепное правило, зададим как .
Этап 1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.3
Заменим все вхождения на .
Этап 1.3
Умножим на .
Этап 1.4
Производная по равна .
Этап 1.5
Умножим на .
Этап 2
Этап 2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2.3
Производная по равна .
Этап 2.4
Возведем в степень .
Этап 2.5
Возведем в степень .
Этап 2.6
Применим правило степени для объединения показателей.
Этап 2.7
Добавим и .
Этап 2.8
Производная по равна .
Этап 2.9
Возведем в степень .
Этап 2.10
Возведем в степень .
Этап 2.11
Применим правило степени для объединения показателей.
Этап 2.12
Добавим и .
Этап 2.13
Упростим.
Этап 2.13.1
Применим свойство дистрибутивности.
Этап 2.13.2
Умножим на .
Этап 3
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 4
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 5
Этап 5.1
Приравняем к .
Этап 5.2
Решим относительно .
Этап 5.2.1
Возьмем обратный косинус обеих частей уравнения, чтобы извлечь из косинуса.
Этап 5.2.2
Упростим правую часть.
Этап 5.2.2.1
Точное значение : .
Этап 5.2.3
Функция косинуса положительна в первом и четвертом квадрантах. Чтобы найти второе решение, вычтем угол приведения из и найдем решение в четвертом квадранте.
Этап 5.2.4
Упростим .
Этап 5.2.4.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 5.2.4.2
Объединим дроби.
Этап 5.2.4.2.1
Объединим и .
Этап 5.2.4.2.2
Объединим числители над общим знаменателем.
Этап 5.2.4.3
Упростим числитель.
Этап 5.2.4.3.1
Умножим на .
Этап 5.2.4.3.2
Вычтем из .
Этап 5.2.5
Решение уравнения .
Этап 6
Этап 6.1
Приравняем к .
Этап 6.2
Решим относительно .
Этап 6.2.1
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 6.2.2
Упростим правую часть.
Этап 6.2.2.1
Точное значение : .
Этап 6.2.3
Функция синуса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
Этап 6.2.4
Вычтем из .
Этап 6.2.5
Решение уравнения .
Этап 7
Окончательным решением являются все значения, при которых верно.
Этап 8
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 9
Этап 9.1
Упростим каждый член.
Этап 9.1.1
Точное значение : .
Этап 9.1.2
Возведение в любую положительную степень дает .
Этап 9.1.3
Умножим на .
Этап 9.1.4
Точное значение : .
Этап 9.1.5
Единица в любой степени равна единице.
Этап 9.1.6
Умножим на .
Этап 9.2
Добавим и .
Этап 10
— локальный минимум, так как вторая производная положительная. Это называется тестом второй производной.
— локальный минимум
Этап 11
Этап 11.1
Заменим в этом выражении переменную на .
Этап 11.2
Упростим результат.
Этап 11.2.1
Точное значение : .
Этап 11.2.2
Возведение в любую положительную степень дает .
Этап 11.2.3
Умножим на .
Этап 11.2.4
Окончательный ответ: .
Этап 12
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 13
Этап 13.1
Упростим каждый член.
Этап 13.1.1
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте.
Этап 13.1.2
Точное значение : .
Этап 13.1.3
Возведение в любую положительную степень дает .
Этап 13.1.4
Умножим на .
Этап 13.1.5
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте. Добавим минус к выражению, так как синус отрицательный в четвертом квадранте.
Этап 13.1.6
Точное значение : .
Этап 13.1.7
Умножим на .
Этап 13.1.8
Возведем в степень .
Этап 13.1.9
Умножим на .
Этап 13.2
Добавим и .
Этап 14
— локальный минимум, так как вторая производная положительная. Это называется тестом второй производной.
— локальный минимум
Этап 15
Этап 15.1
Заменим в этом выражении переменную на .
Этап 15.2
Упростим результат.
Этап 15.2.1
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте.
Этап 15.2.2
Точное значение : .
Этап 15.2.3
Возведение в любую положительную степень дает .
Этап 15.2.4
Умножим на .
Этап 15.2.5
Окончательный ответ: .
Этап 16
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 17
Этап 17.1
Упростим каждый член.
Этап 17.1.1
Точное значение : .
Этап 17.1.2
Единица в любой степени равна единице.
Этап 17.1.3
Умножим на .
Этап 17.1.4
Точное значение : .
Этап 17.1.5
Возведение в любую положительную степень дает .
Этап 17.1.6
Умножим на .
Этап 17.2
Добавим и .
Этап 18
— локальный максимум, так как вторая производная отрицательная. Это называется тестом второй производной.
— локальный максимум
Этап 19
Этап 19.1
Заменим в этом выражении переменную на .
Этап 19.2
Упростим результат.
Этап 19.2.1
Точное значение : .
Этап 19.2.2
Единица в любой степени равна единице.
Этап 19.2.3
Умножим на .
Этап 19.2.4
Окончательный ответ: .
Этап 20
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 21
Этап 21.1
Упростим каждый член.
Этап 21.1.1
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте. Добавим минус к выражению, так как косинус отрицательный во втором квадранте.
Этап 21.1.2
Точное значение : .
Этап 21.1.3
Умножим на .
Этап 21.1.4
Возведем в степень .
Этап 21.1.5
Умножим на .
Этап 21.1.6
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте.
Этап 21.1.7
Точное значение : .
Этап 21.1.8
Возведение в любую положительную степень дает .
Этап 21.1.9
Умножим на .
Этап 21.2
Добавим и .
Этап 22
— локальный максимум, так как вторая производная отрицательная. Это называется тестом второй производной.
— локальный максимум
Этап 23
Этап 23.1
Заменим в этом выражении переменную на .
Этап 23.2
Упростим результат.
Этап 23.2.1
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте. Добавим минус к выражению, так как косинус отрицательный во втором квадранте.
Этап 23.2.2
Точное значение : .
Этап 23.2.3
Умножим на .
Этап 23.2.4
Возведем в степень .
Этап 23.2.5
Умножим на .
Этап 23.2.6
Окончательный ответ: .
Этап 24
Это локальные экстремумы .
— локальный минимум
— локальный минимум
— локальный максимум
— локальный максимум
Этап 25