Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Продифференцируем.
Этап 1.1.1
По правилу суммы производная по имеет вид .
Этап 1.1.2
Поскольку является константой относительно , производная относительно равна .
Этап 1.2
Найдем значение .
Этап 1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.2.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 1.2.2.1
Чтобы применить цепное правило, зададим как .
Этап 1.2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.2.3
Заменим все вхождения на .
Этап 1.2.3
По правилу суммы производная по имеет вид .
Этап 1.2.4
Поскольку является константой относительно , производная относительно равна .
Этап 1.2.5
Поскольку является константой относительно , производная по равна .
Этап 1.2.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.7
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.2.8
Объединим и .
Этап 1.2.9
Объединим числители над общим знаменателем.
Этап 1.2.10
Упростим числитель.
Этап 1.2.10.1
Умножим на .
Этап 1.2.10.2
Вычтем из .
Этап 1.2.11
Вынесем знак минуса перед дробью.
Этап 1.2.12
Умножим на .
Этап 1.2.13
Добавим и .
Этап 1.2.14
Объединим и .
Этап 1.2.15
Объединим и .
Этап 1.2.16
Умножим на .
Этап 1.2.17
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 1.2.18
Вынесем множитель из .
Этап 1.2.19
Сократим общие множители.
Этап 1.2.19.1
Вынесем множитель из .
Этап 1.2.19.2
Сократим общий множитель.
Этап 1.2.19.3
Перепишем это выражение.
Этап 1.3
Вычтем из .
Этап 2
Этап 2.1
Продифференцируем, используя правило умножения на константу.
Этап 2.1.1
Поскольку является константой относительно , производная по равна .
Этап 2.1.2
Применим основные правила для показателей степени.
Этап 2.1.2.1
Перепишем в виде .
Этап 2.1.2.2
Перемножим экспоненты в .
Этап 2.1.2.2.1
Применим правило степени и перемножим показатели, .
Этап 2.1.2.2.2
Умножим .
Этап 2.1.2.2.2.1
Объединим и .
Этап 2.1.2.2.2.2
Умножим на .
Этап 2.1.2.2.3
Вынесем знак минуса перед дробью.
Этап 2.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 2.2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3
Заменим все вхождения на .
Этап 2.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 2.4
Объединим и .
Этап 2.5
Объединим числители над общим знаменателем.
Этап 2.6
Упростим числитель.
Этап 2.6.1
Умножим на .
Этап 2.6.2
Вычтем из .
Этап 2.7
Объединим дроби.
Этап 2.7.1
Вынесем знак минуса перед дробью.
Этап 2.7.2
Объединим и .
Этап 2.7.3
Упростим выражение.
Этап 2.7.3.1
Перенесем влево от .
Этап 2.7.3.2
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 2.7.3.3
Умножим на .
Этап 2.7.4
Объединим и .
Этап 2.7.5
Умножим на .
Этап 2.8
По правилу суммы производная по имеет вид .
Этап 2.9
Поскольку является константой относительно , производная относительно равна .
Этап 2.10
Добавим и .
Этап 2.11
Поскольку является константой относительно , производная по равна .
Этап 2.12
Упростим члены.
Этап 2.12.1
Объединим и .
Этап 2.12.2
Умножим на .
Этап 2.12.3
Вынесем множитель из .
Этап 2.13
Сократим общие множители.
Этап 2.13.1
Вынесем множитель из .
Этап 2.13.2
Сократим общий множитель.
Этап 2.13.3
Перепишем это выражение.
Этап 2.14
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.15
Упростим выражение.
Этап 2.15.1
Умножим на .
Этап 2.15.2
Изменим порядок членов.
Этап 3
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 4
Этап 4.1
Найдем первую производную.
Этап 4.1.1
Продифференцируем.
Этап 4.1.1.1
По правилу суммы производная по имеет вид .
Этап 4.1.1.2
Поскольку является константой относительно , производная относительно равна .
Этап 4.1.2
Найдем значение .
Этап 4.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 4.1.2.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 4.1.2.2.1
Чтобы применить цепное правило, зададим как .
Этап 4.1.2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.2.2.3
Заменим все вхождения на .
Этап 4.1.2.3
По правилу суммы производная по имеет вид .
Этап 4.1.2.4
Поскольку является константой относительно , производная относительно равна .
Этап 4.1.2.5
Поскольку является константой относительно , производная по равна .
Этап 4.1.2.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.2.7
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 4.1.2.8
Объединим и .
Этап 4.1.2.9
Объединим числители над общим знаменателем.
Этап 4.1.2.10
Упростим числитель.
Этап 4.1.2.10.1
Умножим на .
Этап 4.1.2.10.2
Вычтем из .
Этап 4.1.2.11
Вынесем знак минуса перед дробью.
Этап 4.1.2.12
Умножим на .
Этап 4.1.2.13
Добавим и .
Этап 4.1.2.14
Объединим и .
Этап 4.1.2.15
Объединим и .
Этап 4.1.2.16
Умножим на .
Этап 4.1.2.17
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 4.1.2.18
Вынесем множитель из .
Этап 4.1.2.19
Сократим общие множители.
Этап 4.1.2.19.1
Вынесем множитель из .
Этап 4.1.2.19.2
Сократим общий множитель.
Этап 4.1.2.19.3
Перепишем это выражение.
Этап 4.1.3
Вычтем из .
Этап 4.2
Первая производная по равна .
Этап 5
Этап 5.1
Пусть первая производная равна .
Этап 5.2
Приравняем числитель к нулю.
Этап 5.3
Поскольку , решения отсутствуют.
Нет решения
Нет решения
Этап 6
Этап 6.1
Применим правило , чтобы представить возведение в степень в виде радикала.
Этап 6.2
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 6.3
Решим относительно .
Этап 6.3.1
Чтобы избавиться от знака корня в левой части уравнения, возведем обе части в степень .
Этап 6.3.2
Упростим каждую часть уравнения.
Этап 6.3.2.1
С помощью запишем в виде .
Этап 6.3.2.2
Упростим левую часть.
Этап 6.3.2.2.1
Перемножим экспоненты в .
Этап 6.3.2.2.1.1
Применим правило степени и перемножим показатели, .
Этап 6.3.2.2.1.2
Сократим общий множитель .
Этап 6.3.2.2.1.2.1
Сократим общий множитель.
Этап 6.3.2.2.1.2.2
Перепишем это выражение.
Этап 6.3.2.3
Упростим правую часть.
Этап 6.3.2.3.1
Возведение в любую положительную степень дает .
Этап 6.3.3
Решим относительно .
Этап 6.3.3.1
Приравняем к .
Этап 6.3.3.2
Решим относительно .
Этап 6.3.3.2.1
Вычтем из обеих частей уравнения.
Этап 6.3.3.2.2
Разделим каждый член на и упростим.
Этап 6.3.3.2.2.1
Разделим каждый член на .
Этап 6.3.3.2.2.2
Упростим левую часть.
Этап 6.3.3.2.2.2.1
Сократим общий множитель .
Этап 6.3.3.2.2.2.1.1
Сократим общий множитель.
Этап 6.3.3.2.2.2.1.2
Разделим на .
Этап 6.3.3.2.2.3
Упростим правую часть.
Этап 6.3.3.2.2.3.1
Вынесем знак минуса перед дробью.
Этап 7
Критические точки, которые необходимо вычислить.
Этап 8
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 9
Этап 9.1
Сократим общий множитель .
Этап 9.1.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 9.1.2
Сократим общий множитель.
Этап 9.1.3
Перепишем это выражение.
Этап 9.2
Упростим выражение.
Этап 9.2.1
Добавим и .
Этап 9.2.2
Перепишем в виде .
Этап 9.2.3
Применим правило степени и перемножим показатели, .
Этап 9.3
Сократим общий множитель .
Этап 9.3.1
Сократим общий множитель.
Этап 9.3.2
Перепишем это выражение.
Этап 9.4
Возведение в любую положительную степень дает .
Этап 9.5
Выражение содержит деление на . Выражение не определено.
Неопределенные
Неопределенные
Этап 10
Этап 10.1
Разобьем на отдельные интервалы в окрестности значений , при которых первая производная равна или не определена.
Этап 10.2
Подставим любое число такое, что , из интервала в первую производную , чтобы проверить знак результата (отрицательный или положительный).
Этап 10.2.1
Заменим в этом выражении переменную на .
Этап 10.2.2
Упростим результат.
Этап 10.2.2.1
Упростим знаменатель.
Этап 10.2.2.1.1
Умножим на .
Этап 10.2.2.1.2
Вычтем из .
Этап 10.2.2.2
Окончательный ответ: .
Этап 10.3
Подставим любое число такое, что , из интервала в первую производную , чтобы проверить знак результата (отрицательный или положительный).
Этап 10.3.1
Заменим в этом выражении переменную на .
Этап 10.3.2
Упростим результат.
Этап 10.3.2.1
Упростим знаменатель.
Этап 10.3.2.1.1
Умножим на .
Этап 10.3.2.1.2
Добавим и .
Этап 10.3.2.2
Окончательный ответ: .
Этап 10.4
Поскольку первая производная меняет знак с положительного на отрицательный в окрестности , — локальный максимум.
— локальный максимум
— локальный максимум
Этап 11