Введите задачу...
Математический анализ Примеры
Этап 1
Запишем в виде функции.
Этап 2
Этап 2.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 2.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.4
Упростим.
Этап 2.4.1
Изменим порядок членов.
Этап 2.4.2
Изменим порядок множителей в .
Этап 3
Этап 3.1
По правилу суммы производная по имеет вид .
Этап 3.2
Найдем значение .
Этап 3.2.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 3.2.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 3.2.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3
Найдем значение .
Этап 3.3.1
Поскольку является константой относительно , производная по равна .
Этап 3.3.2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 3.3.3
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 3.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3.5
Умножим на .
Этап 3.4
Упростим.
Этап 3.4.1
Применим свойство дистрибутивности.
Этап 3.4.2
Добавим и .
Этап 3.4.2.1
Перенесем .
Этап 3.4.2.2
Добавим и .
Этап 3.4.3
Изменим порядок членов.
Этап 3.4.4
Изменим порядок множителей в .
Этап 4
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 5
Этап 5.1
Найдем первую производную.
Этап 5.1.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 5.1.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 5.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.1.4
Упростим.
Этап 5.1.4.1
Изменим порядок членов.
Этап 5.1.4.2
Изменим порядок множителей в .
Этап 5.2
Первая производная по равна .
Этап 6
Этап 6.1
Пусть первая производная равна .
Этап 6.2
Вынесем множитель из .
Этап 6.2.1
Вынесем множитель из .
Этап 6.2.2
Вынесем множитель из .
Этап 6.2.3
Вынесем множитель из .
Этап 6.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 6.4
Приравняем к .
Этап 6.5
Приравняем к , затем решим относительно .
Этап 6.5.1
Приравняем к .
Этап 6.5.2
Решим относительно .
Этап 6.5.2.1
Возьмем натуральный логарифм обеих частей уравнения, чтобы удалить переменную из показателя степени.
Этап 6.5.2.2
Уравнение невозможно решить, так как выражение не определено.
Неопределенные
Этап 6.5.2.3
Нет решения для
Нет решения
Нет решения
Нет решения
Этап 6.6
Приравняем к , затем решим относительно .
Этап 6.6.1
Приравняем к .
Этап 6.6.2
Вычтем из обеих частей уравнения.
Этап 6.7
Окончательным решением являются все значения, при которых верно.
Этап 7
Этап 7.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 8
Критические точки, которые необходимо вычислить.
Этап 9
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 10
Этап 10.1
Упростим каждый член.
Этап 10.1.1
Возведение в любую положительную степень дает .
Этап 10.1.2
Любое число в степени равно .
Этап 10.1.3
Умножим на .
Этап 10.1.4
Умножим на .
Этап 10.1.5
Любое число в степени равно .
Этап 10.1.6
Умножим на .
Этап 10.1.7
Любое число в степени равно .
Этап 10.1.8
Умножим на .
Этап 10.2
Упростим путем добавления чисел.
Этап 10.2.1
Добавим и .
Этап 10.2.2
Добавим и .
Этап 11
— локальный минимум, так как вторая производная положительная. Это называется тестом второй производной.
— локальный минимум
Этап 12
Этап 12.1
Заменим в этом выражении переменную на .
Этап 12.2
Упростим результат.
Этап 12.2.1
Возведение в любую положительную степень дает .
Этап 12.2.2
Любое число в степени равно .
Этап 12.2.3
Умножим на .
Этап 12.2.4
Окончательный ответ: .
Этап 13
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 14
Этап 14.1
Упростим каждый член.
Этап 14.1.1
Возведем в степень .
Этап 14.1.2
Перепишем выражение, используя правило отрицательных степеней .
Этап 14.1.3
Объединим и .
Этап 14.1.4
Умножим на .
Этап 14.1.5
Перепишем выражение, используя правило отрицательных степеней .
Этап 14.1.6
Объединим и .
Этап 14.1.7
Вынесем знак минуса перед дробью.
Этап 14.1.8
Перепишем выражение, используя правило отрицательных степеней .
Этап 14.1.9
Объединим и .
Этап 14.2
Объединим дроби.
Этап 14.2.1
Объединим числители над общим знаменателем.
Этап 14.2.2
Упростим выражение.
Этап 14.2.2.1
Вычтем из .
Этап 14.2.2.2
Добавим и .
Этап 14.2.2.3
Вынесем знак минуса перед дробью.
Этап 15
— локальный максимум, так как вторая производная отрицательная. Это называется тестом второй производной.
— локальный максимум
Этап 16
Этап 16.1
Заменим в этом выражении переменную на .
Этап 16.2
Упростим результат.
Этап 16.2.1
Возведем в степень .
Этап 16.2.2
Перепишем выражение, используя правило отрицательных степеней .
Этап 16.2.3
Объединим и .
Этап 16.2.4
Окончательный ответ: .
Этап 17
Это локальные экстремумы .
— локальный минимум
— локальный максимум
Этап 18