Математический анализ Примеры

Найти локальный максимум и минимум y=e^(2x)-e^x
Этап 1
Запишем в виде функции.
Этап 2
Найдем первую производную функции.
Нажмите для увеличения количества этапов...
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Чтобы применить цепное правило, зададим как .
Этап 2.2.1.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 2.2.1.3
Заменим все вхождения на .
Этап 2.2.2
Поскольку является константой относительно , производная по равна .
Этап 2.2.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.4
Умножим на .
Этап 2.2.5
Перенесем влево от .
Этап 2.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 3
Найдем вторую производную функции.
Нажмите для увеличения количества этапов...
Этап 3.1
По правилу суммы производная по имеет вид .
Этап 3.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 3.2.1
Поскольку является константой относительно , производная по равна .
Этап 3.2.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 3.2.2.1
Чтобы применить цепное правило, зададим как .
Этап 3.2.2.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 3.2.2.3
Заменим все вхождения на .
Этап 3.2.3
Поскольку является константой относительно , производная по равна .
Этап 3.2.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.2.5
Умножим на .
Этап 3.2.6
Перенесем влево от .
Этап 3.2.7
Умножим на .
Этап 3.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 3.3.1
Поскольку является константой относительно , производная по равна .
Этап 3.3.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 4
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 5
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 5.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 5.1.1
По правилу суммы производная по имеет вид .
Этап 5.1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 5.1.2.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 5.1.2.1.1
Чтобы применить цепное правило, зададим как .
Этап 5.1.2.1.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 5.1.2.1.3
Заменим все вхождения на .
Этап 5.1.2.2
Поскольку является константой относительно , производная по равна .
Этап 5.1.2.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.1.2.4
Умножим на .
Этап 5.1.2.5
Перенесем влево от .
Этап 5.1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 5.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 5.1.3.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 5.2
Первая производная по равна .
Этап 6
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 6.1
Пусть первая производная равна .
Этап 6.2
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Перепишем в виде .
Этап 6.2.2
Пусть . Подставим вместо для всех.
Этап 6.2.3
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 6.2.3.1
Вынесем множитель из .
Этап 6.2.3.2
Вынесем множитель из .
Этап 6.2.3.3
Вынесем множитель из .
Этап 6.2.4
Заменим все вхождения на .
Этап 6.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 6.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.4.1
Приравняем к .
Этап 6.4.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.4.2.1
Возьмем натуральный логарифм обеих частей уравнения, чтобы удалить переменную из показателя степени.
Этап 6.4.2.2
Уравнение невозможно решить, так как выражение не определено.
Неопределенные
Этап 6.4.2.3
Нет решения для
Нет решения
Нет решения
Нет решения
Этап 6.5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.5.1
Приравняем к .
Этап 6.5.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.5.2.1
Добавим к обеим частям уравнения.
Этап 6.5.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 6.5.2.2.1
Разделим каждый член на .
Этап 6.5.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 6.5.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.5.2.2.2.1.1
Сократим общий множитель.
Этап 6.5.2.2.2.1.2
Разделим на .
Этап 6.5.2.3
Возьмем натуральный логарифм обеих частей уравнения, чтобы удалить переменную из показателя степени.
Этап 6.5.2.4
Развернем левую часть.
Нажмите для увеличения количества этапов...
Этап 6.5.2.4.1
Развернем , вынося из логарифма.
Этап 6.5.2.4.2
Натуральный логарифм равен .
Этап 6.5.2.4.3
Умножим на .
Этап 6.6
Окончательным решением являются все значения, при которых верно.
Этап 7
Найдем значения, при которых производная не определена.
Нажмите для увеличения количества этапов...
Этап 7.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 8
Критические точки, которые необходимо вычислить.
Этап 9
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 10
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 10.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 10.1.1
Упростим путем переноса под логарифм.
Этап 10.1.2
Экспонента и логарифм являются обратными функциями.
Этап 10.1.3
Применим правило умножения к .
Этап 10.1.4
Единица в любой степени равна единице.
Этап 10.1.5
Возведем в степень .
Этап 10.1.6
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 10.1.6.1
Сократим общий множитель.
Этап 10.1.6.2
Перепишем это выражение.
Этап 10.1.7
Экспонента и логарифм являются обратными функциями.
Этап 10.2
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 10.2.1
Запишем в виде дроби с общим знаменателем.
Этап 10.2.2
Объединим числители над общим знаменателем.
Этап 10.2.3
Вычтем из .
Этап 11
 — локальный минимум, так как вторая производная положительная. Это называется тестом второй производной.
 — локальный минимум
Этап 12
Найдем значение y, если .
Нажмите для увеличения количества этапов...
Этап 12.1
Заменим в этом выражении переменную на .
Этап 12.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 12.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 12.2.1.1
Упростим путем переноса под логарифм.
Этап 12.2.1.2
Экспонента и логарифм являются обратными функциями.
Этап 12.2.1.3
Применим правило умножения к .
Этап 12.2.1.4
Единица в любой степени равна единице.
Этап 12.2.1.5
Возведем в степень .
Этап 12.2.1.6
Экспонента и логарифм являются обратными функциями.
Этап 12.2.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 12.2.3
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Нажмите для увеличения количества этапов...
Этап 12.2.3.1
Умножим на .
Этап 12.2.3.2
Умножим на .
Этап 12.2.4
Объединим числители над общим знаменателем.
Этап 12.2.5
Вычтем из .
Этап 12.2.6
Вынесем знак минуса перед дробью.
Этап 12.2.7
Окончательный ответ: .
Этап 13
Это локальные экстремумы .
 — локальный минимум
Этап 14