Математический анализ Примеры

Найти локальный максимум и минимум f(x)=x+sin(2x)+4
Этап 1
Найдем первую производную функции.
Нажмите для увеличения количества этапов...
Этап 1.1
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.1.1
По правилу суммы производная по имеет вид .
Этап 1.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.2.1.1
Чтобы применить цепное правило, зададим как .
Этап 1.2.1.2
Производная по равна .
Этап 1.2.1.3
Заменим все вхождения на .
Этап 1.2.2
Поскольку является константой относительно , производная по равна .
Этап 1.2.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.4
Умножим на .
Этап 1.2.5
Перенесем влево от .
Этап 1.3
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Поскольку является константой относительно , производная относительно равна .
Этап 1.3.2
Добавим и .
Этап 2
Найдем вторую производную функции.
Нажмите для увеличения количества этапов...
Этап 2.1
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 2.1.1
По правилу суммы производная по имеет вид .
Этап 2.1.2
Поскольку является константой относительно , производная относительно равна .
Этап 2.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.2.2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2.2.2
Производная по равна .
Этап 2.2.2.3
Заменим все вхождения на .
Этап 2.2.3
Поскольку является константой относительно , производная по равна .
Этап 2.2.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.5
Умножим на .
Этап 2.2.6
Умножим на .
Этап 2.2.7
Умножим на .
Этап 2.3
Вычтем из .
Этап 3
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 4
Вычтем из обеих частей уравнения.
Этап 5
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 5.1
Разделим каждый член на .
Этап 5.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.2.1.1
Сократим общий множитель.
Этап 5.2.1.2
Разделим на .
Этап 5.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.3.1
Вынесем знак минуса перед дробью.
Этап 6
Возьмем обратный косинус обеих частей уравнения, чтобы извлечь из косинуса.
Этап 7
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 7.1
Точное значение : .
Этап 8
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 8.1
Разделим каждый член на .
Этап 8.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 8.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 8.2.1.1
Сократим общий множитель.
Этап 8.2.1.2
Разделим на .
Этап 8.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 8.3.1
Умножим числитель на величину, обратную знаменателю.
Этап 8.3.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 8.3.2.1
Вынесем множитель из .
Этап 8.3.2.2
Сократим общий множитель.
Этап 8.3.2.3
Перепишем это выражение.
Этап 9
Функция косинуса отрицательна во втором и третьем квадрантах. Чтобы найти второе решение, вычтем угол приведения из и найдем решение в третьем квадранте.
Этап 10
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 10.1
Упростим.
Нажмите для увеличения количества этапов...
Этап 10.1.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 10.1.2
Объединим и .
Этап 10.1.3
Объединим числители над общим знаменателем.
Этап 10.1.4
Умножим на .
Этап 10.1.5
Вычтем из .
Этап 10.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 10.2.1
Разделим каждый член на .
Этап 10.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 10.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 10.2.2.1.1
Сократим общий множитель.
Этап 10.2.2.1.2
Разделим на .
Этап 10.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 10.2.3.1
Умножим числитель на величину, обратную знаменателю.
Этап 10.2.3.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 10.2.3.2.1
Вынесем множитель из .
Этап 10.2.3.2.2
Сократим общий множитель.
Этап 10.2.3.2.3
Перепишем это выражение.
Этап 11
Решение уравнения .
Этап 12
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 13
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 13.1
Объединим и .
Этап 13.2
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте.
Этап 13.3
Точное значение : .
Этап 13.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 13.4.1
Вынесем множитель из .
Этап 13.4.2
Сократим общий множитель.
Этап 13.4.3
Перепишем это выражение.
Этап 14
 — локальный максимум, так как вторая производная отрицательная. Это называется тестом второй производной.
 — локальный максимум
Этап 15
Найдем значение y, если .
Нажмите для увеличения количества этапов...
Этап 15.1
Заменим в этом выражении переменную на .
Этап 15.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 15.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 15.2.1.1
Объединим и .
Этап 15.2.1.2
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте.
Этап 15.2.1.3
Точное значение : .
Этап 15.2.2
Окончательный ответ: .
Этап 16
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 17
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 17.1
Умножим .
Нажмите для увеличения количества этапов...
Этап 17.1.1
Объединим и .
Этап 17.1.2
Умножим на .
Этап 17.2
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте. Добавим минус к выражению, так как синус отрицательный в третьем квадранте.
Этап 17.3
Точное значение : .
Этап 17.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 17.4.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 17.4.2
Вынесем множитель из .
Этап 17.4.3
Сократим общий множитель.
Этап 17.4.4
Перепишем это выражение.
Этап 17.5
Умножим на .
Этап 18
 — локальный минимум, так как вторая производная положительная. Это называется тестом второй производной.
 — локальный минимум
Этап 19
Найдем значение y, если .
Нажмите для увеличения количества этапов...
Этап 19.1
Заменим в этом выражении переменную на .
Этап 19.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 19.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 19.2.1.1
Умножим .
Нажмите для увеличения количества этапов...
Этап 19.2.1.1.1
Объединим и .
Этап 19.2.1.1.2
Умножим на .
Этап 19.2.1.2
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте. Добавим минус к выражению, так как синус отрицательный в третьем квадранте.
Этап 19.2.1.3
Точное значение : .
Этап 19.2.2
Окончательный ответ: .
Этап 20
Это локальные экстремумы .
 — локальный максимум
 — локальный минимум
Этап 21