Математический анализ Примеры

Найти локальный максимум и минимум f(x)=sin(2x)
Этап 1
Найдем первую производную функции.
Нажмите для увеличения количества этапов...
Этап 1.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.1.1
Чтобы применить цепное правило, зададим как .
Этап 1.1.2
Производная по равна .
Этап 1.1.3
Заменим все вхождения на .
Этап 1.2
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.3
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 1.2.3.1
Умножим на .
Этап 1.2.3.2
Перенесем влево от .
Этап 2
Найдем вторую производную функции.
Нажмите для увеличения количества этапов...
Этап 2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2.2
Производная по равна .
Этап 2.2.3
Заменим все вхождения на .
Этап 2.3
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Умножим на .
Этап 2.3.2
Поскольку является константой относительно , производная по равна .
Этап 2.3.3
Умножим на .
Этап 2.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.5
Умножим на .
Этап 3
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 4
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 4.1
Разделим каждый член на .
Этап 4.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.2.1.1
Сократим общий множитель.
Этап 4.2.1.2
Разделим на .
Этап 4.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Разделим на .
Этап 5
Возьмем обратный косинус обеих частей уравнения, чтобы извлечь из косинуса.
Этап 6
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 6.1
Точное значение : .
Этап 7
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 7.1
Разделим каждый член на .
Этап 7.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 7.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 7.2.1.1
Сократим общий множитель.
Этап 7.2.1.2
Разделим на .
Этап 7.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 7.3.1
Умножим числитель на величину, обратную знаменателю.
Этап 7.3.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 7.3.2.1
Умножим на .
Этап 7.3.2.2
Умножим на .
Этап 8
Функция косинуса положительна в первом и четвертом квадрантах. Чтобы найти второе решение, вычтем угол приведения из и найдем решение в четвертом квадранте.
Этап 9
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 9.1
Упростим.
Нажмите для увеличения количества этапов...
Этап 9.1.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 9.1.2
Объединим и .
Этап 9.1.3
Объединим числители над общим знаменателем.
Этап 9.1.4
Умножим на .
Этап 9.1.5
Вычтем из .
Этап 9.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 9.2.1
Разделим каждый член на .
Этап 9.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 9.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 9.2.2.1.1
Сократим общий множитель.
Этап 9.2.2.1.2
Разделим на .
Этап 9.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 9.2.3.1
Умножим числитель на величину, обратную знаменателю.
Этап 9.2.3.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 9.2.3.2.1
Умножим на .
Этап 9.2.3.2.2
Умножим на .
Этап 10
Решение уравнения .
Этап 11
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 12
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 12.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 12.1.1
Вынесем множитель из .
Этап 12.1.2
Сократим общий множитель.
Этап 12.1.3
Перепишем это выражение.
Этап 12.2
Точное значение : .
Этап 12.3
Умножим на .
Этап 13
 — локальный максимум, так как вторая производная отрицательная. Это называется тестом второй производной.
 — локальный максимум
Этап 14
Найдем значение y, если .
Нажмите для увеличения количества этапов...
Этап 14.1
Заменим в этом выражении переменную на .
Этап 14.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 14.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 14.2.1.1
Вынесем множитель из .
Этап 14.2.1.2
Сократим общий множитель.
Этап 14.2.1.3
Перепишем это выражение.
Этап 14.2.2
Точное значение : .
Этап 14.2.3
Окончательный ответ: .
Этап 15
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 16
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 16.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 16.1.1
Вынесем множитель из .
Этап 16.1.2
Сократим общий множитель.
Этап 16.1.3
Перепишем это выражение.
Этап 16.2
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте. Добавим минус к выражению, так как синус отрицательный в четвертом квадранте.
Этап 16.3
Точное значение : .
Этап 16.4
Умножим .
Нажмите для увеличения количества этапов...
Этап 16.4.1
Умножим на .
Этап 16.4.2
Умножим на .
Этап 17
 — локальный минимум, так как вторая производная положительная. Это называется тестом второй производной.
 — локальный минимум
Этап 18
Найдем значение y, если .
Нажмите для увеличения количества этапов...
Этап 18.1
Заменим в этом выражении переменную на .
Этап 18.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 18.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 18.2.1.1
Вынесем множитель из .
Этап 18.2.1.2
Сократим общий множитель.
Этап 18.2.1.3
Перепишем это выражение.
Этап 18.2.2
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте. Добавим минус к выражению, так как синус отрицательный в четвертом квадранте.
Этап 18.2.3
Точное значение : .
Этап 18.2.4
Умножим на .
Этап 18.2.5
Окончательный ответ: .
Этап 19
Это локальные экстремумы .
 — локальный максимум
 — локальный минимум
Этап 20