Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Чтобы применить цепное правило, зададим как .
Этап 1.2
Производная по равна .
Этап 1.3
Заменим все вхождения на .
Этап 2
Выразим через синусы и косинусы.
Этап 3
Умножим на обратную дробь, чтобы разделить на .
Этап 4
Переведем в .
Этап 5
Этап 5.1
Чтобы применить цепное правило, зададим как .
Этап 5.2
Производная по равна .
Этап 5.3
Заменим все вхождения на .
Этап 6
Этап 6.1
По правилу суммы производная по имеет вид .
Этап 6.2
Поскольку является константой относительно , производная по равна .
Этап 6.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 6.4
Умножим на .
Этап 6.5
Поскольку является константой относительно , производная относительно равна .
Этап 6.6
Упростим выражение.
Этап 6.6.1
Добавим и .
Этап 6.6.2
Перенесем влево от .
Этап 6.6.3
Изменим порядок множителей в .