Математический анализ Примеры

Trovare la Derivata - d/d@VAR g(t)=0.00331/(0.00331+0.99669e^(-3.8t))
Этап 1
Продифференцируем, используя правило умножения на константу.
Нажмите для увеличения количества этапов...
Этап 1.1
Поскольку является константой относительно , производная по равна .
Этап 1.2
Перепишем в виде .
Этап 2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3
Заменим все вхождения на .
Этап 3
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 3.1
Умножим на .
Этап 3.2
По правилу суммы производная по имеет вид .
Этап 3.3
Поскольку является константой относительно , производная относительно равна .
Этап 3.4
Добавим и .
Этап 3.5
Поскольку является константой относительно , производная по равна .
Этап 3.6
Умножим на .
Этап 4
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 4.1
Чтобы применить цепное правило, зададим как .
Этап 4.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 4.3
Заменим все вхождения на .
Этап 5
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 5.1
Поскольку является константой относительно , производная по равна .
Этап 5.2
Умножим на .
Этап 5.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.4
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 5.4.1
Умножим на .
Этап 5.4.2
Изменим порядок множителей в .