Введите задачу...
Математический анализ Примеры
Этап 1
Поскольку является константой относительно , производная по равна .
Этап 2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 3
Этап 3.1
Чтобы применить цепное правило, зададим как .
Этап 3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3
Заменим все вхождения на .
Этап 4
Этап 4.1
По правилу суммы производная по имеет вид .
Этап 4.2
Поскольку является константой относительно , производная относительно равна .
Этап 4.3
Добавим и .
Этап 4.4
Поскольку является константой относительно , производная по равна .
Этап 4.5
Умножим на .
Этап 4.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.7
Умножим на .
Этап 4.8
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.9
Перенесем влево от .
Этап 5
Этап 5.1
Применим свойство дистрибутивности.
Этап 5.2
Умножим на .
Этап 5.3
Умножим на .
Этап 5.4
Вынесем множитель из .
Этап 5.4.1
Вынесем множитель из .
Этап 5.4.2
Вынесем множитель из .
Этап 5.4.3
Вынесем множитель из .
Этап 5.5
Вычтем из .