Введите задачу...
Математический анализ Примеры
Этап 1
По правилу суммы производная по имеет вид .
Этап 2
Этап 2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3
Умножим на .
Этап 3
Этап 3.1
Поскольку является константой относительно , производная по равна .
Этап 3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3
Умножим на .
Этап 4
Этап 4.1
Поскольку является константой относительно , производная по равна .
Этап 4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 4.4
Объединим и .
Этап 4.5
Объединим числители над общим знаменателем.
Этап 4.6
Упростим числитель.
Этап 4.6.1
Умножим на .
Этап 4.6.2
Вычтем из .
Этап 4.7
Вынесем знак минуса перед дробью.
Этап 4.8
Объединим и .
Этап 4.9
Объединим и .
Этап 4.10
Умножим на .
Этап 4.11
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 4.12
Вынесем множитель из .
Этап 4.13
Сократим общие множители.
Этап 4.13.1
Вынесем множитель из .
Этап 4.13.2
Сократим общий множитель.
Этап 4.13.3
Перепишем это выражение.
Этап 5
Изменим порядок членов.