Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
По правилу суммы производная по имеет вид .
Этап 1.2
Найдем значение .
Этап 1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.3
Объединим и .
Этап 1.2.4
Умножим на .
Этап 1.2.5
Объединим и .
Этап 1.2.6
Сократим общий множитель и .
Этап 1.2.6.1
Вынесем множитель из .
Этап 1.2.6.2
Сократим общие множители.
Этап 1.2.6.2.1
Вынесем множитель из .
Этап 1.2.6.2.2
Сократим общий множитель.
Этап 1.2.6.2.3
Перепишем это выражение.
Этап 1.2.6.2.4
Разделим на .
Этап 1.3
Найдем значение .
Этап 1.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.3
Умножим на .
Этап 1.4
Найдем значение .
Этап 1.4.1
Поскольку является константой относительно , производная по равна .
Этап 1.4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.4.3
Умножим на .
Этап 1.5
Продифференцируем, используя правило константы.
Этап 1.5.1
Поскольку является константой относительно , производная относительно равна .
Этап 1.5.2
Добавим и .
Этап 2
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Найдем значение .
Этап 2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3
Умножим на .
Этап 2.3
Найдем значение .
Этап 2.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.3
Умножим на .
Этап 2.4
Продифференцируем, используя правило константы.
Этап 2.4.1
Поскольку является константой относительно , производная относительно равна .
Этап 2.4.2
Добавим и .
Этап 3
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 4
Этап 4.1
Найдем первую производную.
Этап 4.1.1
По правилу суммы производная по имеет вид .
Этап 4.1.2
Найдем значение .
Этап 4.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 4.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.2.3
Объединим и .
Этап 4.1.2.4
Умножим на .
Этап 4.1.2.5
Объединим и .
Этап 4.1.2.6
Сократим общий множитель и .
Этап 4.1.2.6.1
Вынесем множитель из .
Этап 4.1.2.6.2
Сократим общие множители.
Этап 4.1.2.6.2.1
Вынесем множитель из .
Этап 4.1.2.6.2.2
Сократим общий множитель.
Этап 4.1.2.6.2.3
Перепишем это выражение.
Этап 4.1.2.6.2.4
Разделим на .
Этап 4.1.3
Найдем значение .
Этап 4.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 4.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.3.3
Умножим на .
Этап 4.1.4
Найдем значение .
Этап 4.1.4.1
Поскольку является константой относительно , производная по равна .
Этап 4.1.4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.4.3
Умножим на .
Этап 4.1.5
Продифференцируем, используя правило константы.
Этап 4.1.5.1
Поскольку является константой относительно , производная относительно равна .
Этап 4.1.5.2
Добавим и .
Этап 4.2
Первая производная по равна .
Этап 5
Этап 5.1
Пусть первая производная равна .
Этап 5.2
Вынесем множитель из .
Этап 5.2.1
Вынесем множитель из .
Этап 5.2.2
Вынесем множитель из .
Этап 5.2.3
Вынесем множитель из .
Этап 5.2.4
Вынесем множитель из .
Этап 5.2.5
Вынесем множитель из .
Этап 5.3
Разделим каждый член на и упростим.
Этап 5.3.1
Разделим каждый член на .
Этап 5.3.2
Упростим левую часть.
Этап 5.3.2.1
Сократим общий множитель .
Этап 5.3.2.1.1
Сократим общий множитель.
Этап 5.3.2.1.2
Разделим на .
Этап 5.3.3
Упростим правую часть.
Этап 5.3.3.1
Разделим на .
Этап 5.4
Используем формулу для нахождения корней квадратного уравнения.
Этап 5.5
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 5.6
Упростим.
Этап 5.6.1
Упростим числитель.
Этап 5.6.1.1
Возведем в степень .
Этап 5.6.1.2
Умножим .
Этап 5.6.1.2.1
Умножим на .
Этап 5.6.1.2.2
Умножим на .
Этап 5.6.1.3
Вычтем из .
Этап 5.6.1.4
Перепишем в виде .
Этап 5.6.1.4.1
Вынесем множитель из .
Этап 5.6.1.4.2
Перепишем в виде .
Этап 5.6.1.5
Вынесем члены из-под знака корня.
Этап 5.6.2
Умножим на .
Этап 5.6.3
Упростим .
Этап 5.7
Упростим выражение, которое нужно решить для части значения .
Этап 5.7.1
Упростим числитель.
Этап 5.7.1.1
Возведем в степень .
Этап 5.7.1.2
Умножим .
Этап 5.7.1.2.1
Умножим на .
Этап 5.7.1.2.2
Умножим на .
Этап 5.7.1.3
Вычтем из .
Этап 5.7.1.4
Перепишем в виде .
Этап 5.7.1.4.1
Вынесем множитель из .
Этап 5.7.1.4.2
Перепишем в виде .
Этап 5.7.1.5
Вынесем члены из-под знака корня.
Этап 5.7.2
Умножим на .
Этап 5.7.3
Упростим .
Этап 5.7.4
Заменим на .
Этап 5.8
Упростим выражение, которое нужно решить для части значения .
Этап 5.8.1
Упростим числитель.
Этап 5.8.1.1
Возведем в степень .
Этап 5.8.1.2
Умножим .
Этап 5.8.1.2.1
Умножим на .
Этап 5.8.1.2.2
Умножим на .
Этап 5.8.1.3
Вычтем из .
Этап 5.8.1.4
Перепишем в виде .
Этап 5.8.1.4.1
Вынесем множитель из .
Этап 5.8.1.4.2
Перепишем в виде .
Этап 5.8.1.5
Вынесем члены из-под знака корня.
Этап 5.8.2
Умножим на .
Этап 5.8.3
Упростим .
Этап 5.8.4
Заменим на .
Этап 5.9
Окончательный ответ является комбинацией обоих решений.
Этап 6
Этап 6.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 7
Критические точки, которые необходимо вычислить.
Этап 8
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 9
Этап 9.1
Упростим каждый член.
Этап 9.1.1
Сократим общий множитель .
Этап 9.1.1.1
Вынесем множитель из .
Этап 9.1.1.2
Сократим общий множитель.
Этап 9.1.1.3
Перепишем это выражение.
Этап 9.1.2
Применим свойство дистрибутивности.
Этап 9.1.3
Умножим на .
Этап 9.2
Упростим путем вычитания чисел.
Этап 9.2.1
Вычтем из .
Этап 9.2.2
Добавим и .
Этап 10
— локальный минимум, так как вторая производная положительная. Это называется тестом второй производной.
— локальный минимум
Этап 11
Этап 11.1
Заменим в этом выражении переменную на .
Этап 11.2
Упростим результат.
Этап 11.2.1
Упростим каждый член.
Этап 11.2.1.1
Применим правило умножения к .
Этап 11.2.1.2
Объединим.
Этап 11.2.1.3
Возведем в степень .
Этап 11.2.1.4
Умножим на .
Этап 11.2.1.5
Сократим общий множитель и .
Этап 11.2.1.5.1
Вынесем множитель из .
Этап 11.2.1.5.2
Сократим общие множители.
Этап 11.2.1.5.2.1
Вынесем множитель из .
Этап 11.2.1.5.2.2
Сократим общий множитель.
Этап 11.2.1.5.2.3
Перепишем это выражение.
Этап 11.2.1.6
Воспользуемся бином Ньютона.
Этап 11.2.1.7
Упростим каждый член.
Этап 11.2.1.7.1
Возведем в степень .
Этап 11.2.1.7.2
Возведем в степень .
Этап 11.2.1.7.3
Умножим на .
Этап 11.2.1.7.4
Умножим на .
Этап 11.2.1.7.5
Перепишем в виде .
Этап 11.2.1.7.5.1
С помощью запишем в виде .
Этап 11.2.1.7.5.2
Применим правило степени и перемножим показатели, .
Этап 11.2.1.7.5.3
Объединим и .
Этап 11.2.1.7.5.4
Сократим общий множитель .
Этап 11.2.1.7.5.4.1
Сократим общий множитель.
Этап 11.2.1.7.5.4.2
Перепишем это выражение.
Этап 11.2.1.7.5.5
Найдем экспоненту.
Этап 11.2.1.7.6
Умножим на .
Этап 11.2.1.7.7
Перепишем в виде .
Этап 11.2.1.7.8
Возведем в степень .
Этап 11.2.1.7.9
Перепишем в виде .
Этап 11.2.1.7.9.1
Вынесем множитель из .
Этап 11.2.1.7.9.2
Перепишем в виде .
Этап 11.2.1.7.10
Вынесем члены из-под знака корня.
Этап 11.2.1.8
Добавим и .
Этап 11.2.1.9
Добавим и .
Этап 11.2.1.10
Сократим общий множитель и .
Этап 11.2.1.10.1
Вынесем множитель из .
Этап 11.2.1.10.2
Вынесем множитель из .
Этап 11.2.1.10.3
Вынесем множитель из .
Этап 11.2.1.10.4
Сократим общие множители.
Этап 11.2.1.10.4.1
Вынесем множитель из .
Этап 11.2.1.10.4.2
Сократим общий множитель.
Этап 11.2.1.10.4.3
Перепишем это выражение.
Этап 11.2.1.11
Применим правило умножения к .
Этап 11.2.1.12
Возведем в степень .
Этап 11.2.1.13
Сократим общий множитель .
Этап 11.2.1.13.1
Вынесем множитель из .
Этап 11.2.1.13.2
Сократим общий множитель.
Этап 11.2.1.13.3
Перепишем это выражение.
Этап 11.2.1.14
Перепишем в виде .
Этап 11.2.1.15
Развернем , используя метод «первые-внешние-внутренние-последние».
Этап 11.2.1.15.1
Применим свойство дистрибутивности.
Этап 11.2.1.15.2
Применим свойство дистрибутивности.
Этап 11.2.1.15.3
Применим свойство дистрибутивности.
Этап 11.2.1.16
Упростим и объединим подобные члены.
Этап 11.2.1.16.1
Упростим каждый член.
Этап 11.2.1.16.1.1
Умножим на .
Этап 11.2.1.16.1.2
Перенесем влево от .
Этап 11.2.1.16.1.3
Объединим, используя правило умножения для радикалов.
Этап 11.2.1.16.1.4
Умножим на .
Этап 11.2.1.16.1.5
Перепишем в виде .
Этап 11.2.1.16.1.6
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 11.2.1.16.2
Добавим и .
Этап 11.2.1.16.3
Добавим и .
Этап 11.2.1.17
Применим свойство дистрибутивности.
Этап 11.2.1.18
Умножим на .
Этап 11.2.1.19
Умножим на .
Этап 11.2.1.20
Сократим общий множитель .
Этап 11.2.1.20.1
Вынесем множитель из .
Этап 11.2.1.20.2
Сократим общий множитель.
Этап 11.2.1.20.3
Перепишем это выражение.
Этап 11.2.1.21
Применим свойство дистрибутивности.
Этап 11.2.1.22
Умножим на .
Этап 11.2.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 11.2.3
Объединим и .
Этап 11.2.4
Упростим выражение.
Этап 11.2.4.1
Объединим числители над общим знаменателем.
Этап 11.2.4.2
Умножим на .
Этап 11.2.4.3
Вычтем из .
Этап 11.2.5
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 11.2.6
Объединим дроби.
Этап 11.2.6.1
Объединим и .
Этап 11.2.6.2
Объединим числители над общим знаменателем.
Этап 11.2.7
Упростим числитель.
Этап 11.2.7.1
Умножим на .
Этап 11.2.7.2
Вычтем из .
Этап 11.2.8
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 11.2.9
Объединим и .
Этап 11.2.10
Упростим выражение.
Этап 11.2.10.1
Объединим числители над общим знаменателем.
Этап 11.2.10.2
Умножим на .
Этап 11.2.10.3
Добавим и .
Этап 11.2.11
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 11.2.12
Объединим дроби.
Этап 11.2.12.1
Объединим и .
Этап 11.2.12.2
Объединим числители над общим знаменателем.
Этап 11.2.13
Упростим числитель.
Этап 11.2.13.1
Умножим на .
Этап 11.2.13.2
Добавим и .
Этап 11.2.14
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 11.2.15
Объединим дроби.
Этап 11.2.15.1
Объединим и .
Этап 11.2.15.2
Объединим числители над общим знаменателем.
Этап 11.2.16
Упростим числитель.
Этап 11.2.16.1
Умножим на .
Этап 11.2.16.2
Добавим и .
Этап 11.2.17
Окончательный ответ: .
Этап 12
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 13
Этап 13.1
Упростим каждый член.
Этап 13.1.1
Сократим общий множитель .
Этап 13.1.1.1
Вынесем множитель из .
Этап 13.1.1.2
Сократим общий множитель.
Этап 13.1.1.3
Перепишем это выражение.
Этап 13.1.2
Применим свойство дистрибутивности.
Этап 13.1.3
Умножим на .
Этап 13.1.4
Умножим на .
Этап 13.2
Упростим путем вычитания чисел.
Этап 13.2.1
Вычтем из .
Этап 13.2.2
Вычтем из .
Этап 14
— локальный максимум, так как вторая производная отрицательная. Это называется тестом второй производной.
— локальный максимум
Этап 15
Этап 15.1
Заменим в этом выражении переменную на .
Этап 15.2
Упростим результат.
Этап 15.2.1
Упростим каждый член.
Этап 15.2.1.1
Применим правило умножения к .
Этап 15.2.1.2
Объединим.
Этап 15.2.1.3
Возведем в степень .
Этап 15.2.1.4
Умножим на .
Этап 15.2.1.5
Сократим общий множитель и .
Этап 15.2.1.5.1
Вынесем множитель из .
Этап 15.2.1.5.2
Сократим общие множители.
Этап 15.2.1.5.2.1
Вынесем множитель из .
Этап 15.2.1.5.2.2
Сократим общий множитель.
Этап 15.2.1.5.2.3
Перепишем это выражение.
Этап 15.2.1.6
Воспользуемся бином Ньютона.
Этап 15.2.1.7
Упростим каждый член.
Этап 15.2.1.7.1
Возведем в степень .
Этап 15.2.1.7.2
Возведем в степень .
Этап 15.2.1.7.3
Умножим на .
Этап 15.2.1.7.4
Умножим на .
Этап 15.2.1.7.5
Умножим на .
Этап 15.2.1.7.6
Применим правило умножения к .
Этап 15.2.1.7.7
Возведем в степень .
Этап 15.2.1.7.8
Умножим на .
Этап 15.2.1.7.9
Перепишем в виде .
Этап 15.2.1.7.9.1
С помощью запишем в виде .
Этап 15.2.1.7.9.2
Применим правило степени и перемножим показатели, .
Этап 15.2.1.7.9.3
Объединим и .
Этап 15.2.1.7.9.4
Сократим общий множитель .
Этап 15.2.1.7.9.4.1
Сократим общий множитель.
Этап 15.2.1.7.9.4.2
Перепишем это выражение.
Этап 15.2.1.7.9.5
Найдем экспоненту.
Этап 15.2.1.7.10
Умножим на .
Этап 15.2.1.7.11
Применим правило умножения к .
Этап 15.2.1.7.12
Возведем в степень .
Этап 15.2.1.7.13
Перепишем в виде .
Этап 15.2.1.7.14
Возведем в степень .
Этап 15.2.1.7.15
Перепишем в виде .
Этап 15.2.1.7.15.1
Вынесем множитель из .
Этап 15.2.1.7.15.2
Перепишем в виде .
Этап 15.2.1.7.16
Вынесем члены из-под знака корня.
Этап 15.2.1.7.17
Умножим на .
Этап 15.2.1.8
Добавим и .
Этап 15.2.1.9
Вычтем из .
Этап 15.2.1.10
Сократим общий множитель и .
Этап 15.2.1.10.1
Вынесем множитель из .
Этап 15.2.1.10.2
Вынесем множитель из .
Этап 15.2.1.10.3
Вынесем множитель из .
Этап 15.2.1.10.4
Сократим общие множители.
Этап 15.2.1.10.4.1
Вынесем множитель из .
Этап 15.2.1.10.4.2
Сократим общий множитель.
Этап 15.2.1.10.4.3
Перепишем это выражение.
Этап 15.2.1.11
Применим правило умножения к .
Этап 15.2.1.12
Возведем в степень .
Этап 15.2.1.13
Сократим общий множитель .
Этап 15.2.1.13.1
Вынесем множитель из .
Этап 15.2.1.13.2
Сократим общий множитель.
Этап 15.2.1.13.3
Перепишем это выражение.
Этап 15.2.1.14
Перепишем в виде .
Этап 15.2.1.15
Развернем , используя метод «первые-внешние-внутренние-последние».
Этап 15.2.1.15.1
Применим свойство дистрибутивности.
Этап 15.2.1.15.2
Применим свойство дистрибутивности.
Этап 15.2.1.15.3
Применим свойство дистрибутивности.
Этап 15.2.1.16
Упростим и объединим подобные члены.
Этап 15.2.1.16.1
Упростим каждый член.
Этап 15.2.1.16.1.1
Умножим на .
Этап 15.2.1.16.1.2
Умножим на .
Этап 15.2.1.16.1.3
Умножим на .
Этап 15.2.1.16.1.4
Умножим .
Этап 15.2.1.16.1.4.1
Умножим на .
Этап 15.2.1.16.1.4.2
Умножим на .
Этап 15.2.1.16.1.4.3
Возведем в степень .
Этап 15.2.1.16.1.4.4
Возведем в степень .
Этап 15.2.1.16.1.4.5
Применим правило степени для объединения показателей.
Этап 15.2.1.16.1.4.6
Добавим и .
Этап 15.2.1.16.1.5
Перепишем в виде .
Этап 15.2.1.16.1.5.1
С помощью запишем в виде .
Этап 15.2.1.16.1.5.2
Применим правило степени и перемножим показатели, .
Этап 15.2.1.16.1.5.3
Объединим и .
Этап 15.2.1.16.1.5.4
Сократим общий множитель .
Этап 15.2.1.16.1.5.4.1
Сократим общий множитель.
Этап 15.2.1.16.1.5.4.2
Перепишем это выражение.
Этап 15.2.1.16.1.5.5
Найдем экспоненту.
Этап 15.2.1.16.2
Добавим и .
Этап 15.2.1.16.3
Вычтем из .
Этап 15.2.1.17
Применим свойство дистрибутивности.
Этап 15.2.1.18
Умножим на .
Этап 15.2.1.19
Умножим на .
Этап 15.2.1.20
Сократим общий множитель .
Этап 15.2.1.20.1
Вынесем множитель из .
Этап 15.2.1.20.2
Сократим общий множитель.
Этап 15.2.1.20.3
Перепишем это выражение.
Этап 15.2.1.21
Применим свойство дистрибутивности.
Этап 15.2.1.22
Умножим на .
Этап 15.2.1.23
Умножим на .
Этап 15.2.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 15.2.3
Объединим и .
Этап 15.2.4
Упростим выражение.
Этап 15.2.4.1
Объединим числители над общим знаменателем.
Этап 15.2.4.2
Умножим на .
Этап 15.2.4.3
Вычтем из .
Этап 15.2.5
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 15.2.6
Объединим дроби.
Этап 15.2.6.1
Объединим и .
Этап 15.2.6.2
Объединим числители над общим знаменателем.
Этап 15.2.7
Упростим числитель.
Этап 15.2.7.1
Умножим на .
Этап 15.2.7.2
Добавим и .
Этап 15.2.8
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 15.2.9
Объединим и .
Этап 15.2.10
Упростим выражение.
Этап 15.2.10.1
Объединим числители над общим знаменателем.
Этап 15.2.10.2
Умножим на .
Этап 15.2.10.3
Добавим и .
Этап 15.2.11
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 15.2.12
Объединим дроби.
Этап 15.2.12.1
Объединим и .
Этап 15.2.12.2
Объединим числители над общим знаменателем.
Этап 15.2.13
Упростим числитель.
Этап 15.2.13.1
Умножим на .
Этап 15.2.13.2
Вычтем из .
Этап 15.2.14
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 15.2.15
Объединим дроби.
Этап 15.2.15.1
Объединим и .
Этап 15.2.15.2
Объединим числители над общим знаменателем.
Этап 15.2.16
Упростим числитель.
Этап 15.2.16.1
Умножим на .
Этап 15.2.16.2
Добавим и .
Этап 15.2.17
Окончательный ответ: .
Этап 16
Это локальные экстремумы .
— локальный минимум
— локальный максимум
Этап 17