Введите задачу...
Математический анализ Примеры
Этап 1
Продифференцируем обе части уравнения.
Этап 2
Этап 2.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 2.1.1
Чтобы применить цепное правило, зададим как .
Этап 2.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.3
Заменим все вхождения на .
Этап 2.2
Перепишем в виде .
Этап 3
Этап 3.1
Перепишем в виде .
Этап 3.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 3.2.1
Чтобы применить цепное правило, зададим как .
Этап 3.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.2.3
Заменим все вхождения на .
Этап 3.3
Продифференцируем.
Этап 3.3.1
По правилу суммы производная по имеет вид .
Этап 3.3.2
Поскольку является константой относительно , производная относительно равна .
Этап 3.3.3
Добавим и .
Этап 3.3.4
Поскольку является константой относительно , производная по равна .
Этап 3.3.5
Умножим.
Этап 3.3.5.1
Умножим на .
Этап 3.3.5.2
Умножим на .
Этап 3.3.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3.7
Перенесем влево от .
Этап 3.4
Перепишем выражение, используя правило отрицательных степеней .
Этап 3.5
Упростим.
Этап 3.5.1
Объединим термины.
Этап 3.5.1.1
Объединим и .
Этап 3.5.1.2
Объединим и .
Этап 3.5.2
Изменим порядок членов.
Этап 4
Преобразуем уравнение, приравняв левую часть к правой.
Этап 5
Этап 5.1
Разделим каждый член на .
Этап 5.2
Упростим левую часть.
Этап 5.2.1
Сократим общий множитель .
Этап 5.2.1.1
Сократим общий множитель.
Этап 5.2.1.2
Перепишем это выражение.
Этап 5.2.2
Сократим общий множитель .
Этап 5.2.2.1
Сократим общий множитель.
Этап 5.2.2.2
Разделим на .
Этап 5.3
Упростим правую часть.
Этап 5.3.1
Умножим числитель на величину, обратную знаменателю.
Этап 5.3.2
Упростим члены.
Этап 5.3.2.1
Объединим.
Этап 5.3.2.2
Сократим общий множитель .
Этап 5.3.2.2.1
Сократим общий множитель.
Этап 5.3.2.2.2
Перепишем это выражение.
Этап 5.3.2.3
Умножим на .
Этап 5.3.3
Упростим знаменатель.
Этап 5.3.3.1
Перепишем в виде .
Этап 5.3.3.2
Изменим порядок и .
Этап 5.3.3.3
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 5.3.3.4
Применим правило умножения к .
Этап 5.3.4
Изменим порядок множителей в .
Этап 6
Заменим на .