Математический анализ Примеры

Этап 1
Продифференцируем обе части уравнения.
Этап 2
Продифференцируем левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 2.2.3
Объединим и .
Этап 2.2.4
Объединим числители над общим знаменателем.
Этап 2.2.5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.2.5.1
Умножим на .
Этап 2.2.5.2
Вычтем из .
Этап 2.2.6
Вынесем знак минуса перед дробью.
Этап 2.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.3.1.1
Чтобы применить цепное правило, зададим как .
Этап 2.3.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.1.3
Заменим все вхождения на .
Этап 2.3.2
Перепишем в виде .
Этап 2.3.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 2.3.4
Объединим и .
Этап 2.3.5
Объединим числители над общим знаменателем.
Этап 2.3.6
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.3.6.1
Умножим на .
Этап 2.3.6.2
Вычтем из .
Этап 2.3.7
Объединим и .
Этап 2.3.8
Объединим и .
Этап 2.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.4.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 2.4.2
Умножим на .
Этап 3
Поскольку является константой относительно , производная относительно равна .
Этап 4
Преобразуем уравнение, приравняв левую часть к правой.
Этап 5
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.1
Изменим порядок множителей в .
Этап 5.2
Вычтем из обеих частей уравнения.
Этап 5.3
Умножим обе части уравнения на .
Этап 5.4
Упростим обе части уравнения.
Нажмите для увеличения количества этапов...
Этап 5.4.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.4.1.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 5.4.1.1.1
Объединим.
Этап 5.4.1.1.2
Сократим общий множитель.
Этап 5.4.1.1.3
Перепишем это выражение.
Этап 5.4.1.1.4
Сократим общий множитель.
Этап 5.4.1.1.5
Разделим на .
Этап 5.4.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.4.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 5.4.2.1.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.4.2.1.1.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 5.4.2.1.1.2
Вынесем множитель из .
Этап 5.4.2.1.1.3
Вынесем множитель из .
Этап 5.4.2.1.1.4
Сократим общий множитель.
Этап 5.4.2.1.1.5
Перепишем это выражение.
Этап 5.4.2.1.2
Умножим на .
Этап 5.4.2.1.3
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 5.4.2.1.3.1
Умножим на .
Этап 5.4.2.1.3.2
Умножим на .
Этап 5.4.2.1.3.3
Вынесем знак минуса перед дробью.
Этап 5.5
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 5.5.1
Разделим каждый член на .
Этап 5.5.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.5.2.1
Сократим общий множитель.
Этап 5.5.2.2
Разделим на .
Этап 5.5.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.5.3.1
Умножим числитель на величину, обратную знаменателю.
Этап 5.5.3.2
Умножим на .
Этап 5.5.3.3
Перенесем влево от .
Этап 6
Заменим на .