Введите задачу...
Математический анализ Примеры
Этап 1
Чтобы найти функцию , вычислим неопределенный интеграл производной .
Этап 2
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 3
Этап 3.1
Пусть . Найдем .
Этап 3.1.1
Дифференцируем .
Этап 3.1.2
Поскольку является константой относительно , производная по равна .
Этап 3.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.1.4
Умножим на .
Этап 3.2
Переформулируем задачу с помощью и .
Этап 4
Этап 4.1
Умножим на обратную дробь, чтобы разделить на .
Этап 4.2
Умножим на .
Этап 4.3
Перенесем влево от .
Этап 5
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 6
Этап 6.1
Объединим и .
Этап 6.2
Сократим общий множитель .
Этап 6.2.1
Сократим общий множитель.
Этап 6.2.2
Перепишем это выражение.
Этап 6.3
Умножим на .
Этап 7
Поскольку производная равна , интеграл равен .
Этап 8
Заменим все вхождения на .
Этап 9
Функция получается интегрированием производной функции. Это подтверждается основной теоремой математического анализа.