Введите задачу...
Математический анализ Примеры
Этап 1
Чтобы найти функцию , найдем неопределенный интеграл производной .
Этап 2
Составим интеграл, чтобы решить его.
Этап 3
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 4
Этап 4.1
Вынесем из знаменателя, возведя в степень.
Этап 4.2
Перемножим экспоненты в .
Этап 4.2.1
Применим правило степени и перемножим показатели, .
Этап 4.2.2
Умножим на .
Этап 5
По правилу степени интеграл по имеет вид .
Этап 6
Этап 6.1
Упростим.
Этап 6.1.1
Объединим и .
Этап 6.1.2
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 6.2
Упростим.
Этап 6.3
Упростим.
Этап 6.3.1
Умножим на .
Этап 6.3.2
Объединим и .
Этап 6.3.3
Сократим общий множитель и .
Этап 6.3.3.1
Вынесем множитель из .
Этап 6.3.3.2
Сократим общие множители.
Этап 6.3.3.2.1
Вынесем множитель из .
Этап 6.3.3.2.2
Сократим общий множитель.
Этап 6.3.3.2.3
Перепишем это выражение.
Этап 6.3.4
Вынесем знак минуса перед дробью.
Этап 7
Ответ ― первообразная функции .