Введите задачу...
Математический анализ Примеры
Этап 1
Чтобы найти функцию , найдем неопределенный интеграл производной .
Этап 2
Составим интеграл, чтобы решить его.
Этап 3
Разделим данный интеграл на несколько интегралов.
Этап 4
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 5
Этап 5.1
Вынесем из знаменателя, возведя в степень.
Этап 5.2
Перемножим экспоненты в .
Этап 5.2.1
Применим правило степени и перемножим показатели, .
Этап 5.2.2
Умножим на .
Этап 6
По правилу степени интеграл по имеет вид .
Этап 7
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 8
Этап 8.1
Вынесем из знаменателя, возведя в степень.
Этап 8.2
Перемножим экспоненты в .
Этап 8.2.1
Применим правило степени и перемножим показатели, .
Этап 8.2.2
Умножим на .
Этап 9
По правилу степени интеграл по имеет вид .
Этап 10
С помощью запишем в виде .
Этап 11
По правилу степени интеграл по имеет вид .
Этап 12
Упростим.
Этап 13
Ответ ― первообразная функции .