Введите задачу...
Математический анализ Примеры
Этап 1
Запишем в виде функции.
Этап 2
Чтобы найти функцию , найдем неопределенный интеграл производной .
Этап 3
Составим интеграл, чтобы решить его.
Этап 4
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 5
Этап 5.1
Пусть . Найдем .
Этап 5.1.1
Дифференцируем .
Этап 5.1.2
Продифференцируем.
Этап 5.1.2.1
По правилу суммы производная по имеет вид .
Этап 5.1.2.2
Поскольку является константой относительно , производная относительно равна .
Этап 5.1.3
Найдем значение .
Этап 5.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 5.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.1.3.3
Умножим на .
Этап 5.1.4
Вычтем из .
Этап 5.2
Переформулируем задачу с помощью и .
Этап 6
Этап 6.1
Вынесем знак минуса перед дробью.
Этап 6.2
Умножим на .
Этап 6.3
Перенесем влево от .
Этап 7
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 8
Умножим на .
Этап 9
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 10
Этап 10.1
Упростим.
Этап 10.1.1
Объединим и .
Этап 10.1.2
Сократим общий множитель и .
Этап 10.1.2.1
Вынесем множитель из .
Этап 10.1.2.2
Сократим общие множители.
Этап 10.1.2.2.1
Вынесем множитель из .
Этап 10.1.2.2.2
Сократим общий множитель.
Этап 10.1.2.2.3
Перепишем это выражение.
Этап 10.1.2.2.4
Разделим на .
Этап 10.2
Применим основные правила для показателей степени.
Этап 10.2.1
Вынесем из знаменателя, возведя в степень.
Этап 10.2.2
Перемножим экспоненты в .
Этап 10.2.2.1
Применим правило степени и перемножим показатели, .
Этап 10.2.2.2
Умножим на .
Этап 11
По правилу степени интеграл по имеет вид .
Этап 12
Этап 12.1
Перепишем в виде .
Этап 12.2
Упростим.
Этап 12.2.1
Умножим на .
Этап 12.2.2
Объединим и .
Этап 13
Заменим все вхождения на .
Этап 14
Ответ ― первообразная функции .