Введите задачу...
Математический анализ Примеры
Этап 1
Чтобы найти функцию , найдем неопределенный интеграл производной .
Этап 2
Составим интеграл, чтобы решить его.
Этап 3
Разделим данный интеграл на несколько интегралов.
Этап 4
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 5
Поскольку производная равна , интеграл равен .
Этап 6
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 7
По правилу степени интеграл по имеет вид .
Этап 8
Этап 8.1
Вынесем из знаменателя, возведя в степень.
Этап 8.2
Упростим.
Этап 8.2.1
Объединим и .
Этап 8.2.2
Перемножим экспоненты в .
Этап 8.2.2.1
Применим правило степени и перемножим показатели, .
Этап 8.2.2.2
Объединим и .
Этап 8.2.2.3
Вынесем знак минуса перед дробью.
Этап 9
По правилу степени интеграл по имеет вид .
Этап 10
Упростим.
Этап 11
Изменим порядок членов.
Этап 12
Ответ ― первообразная функции .