Математический анализ Примеры

Оценить предел предел 8/x-8/(x^2+x), если x стремится к 0
Этап 1
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 1.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.3
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Нажмите для увеличения количества этапов...
Этап 1.3.1
Умножим на .
Этап 1.3.2
Умножим на .
Этап 1.3.3
Изменим порядок множителей в .
Этап 1.4
Объединим числители над общим знаменателем.
Этап 2
Применим правило Лопиталя.
Нажмите для увеличения количества этапов...
Этап 2.1
Найдем предел числителя и предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 2.1.1
Возьмем предел числителя и предел знаменателя.
Этап 2.1.2
Найдем предел числителя.
Нажмите для увеличения количества этапов...
Этап 2.1.2.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 2.1.2.2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 2.1.2.3
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 2.1.2.4
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 2.1.2.5
Вынесем член из-под знака предела, так как он не зависит от .
Этап 2.1.2.6
Найдем значения пределов, подставив значение для всех вхождений .
Нажмите для увеличения количества этапов...
Этап 2.1.2.6.1
Найдем предел , подставив значение для .
Этап 2.1.2.6.2
Найдем предел , подставив значение для .
Этап 2.1.2.6.3
Найдем предел , подставив значение для .
Этап 2.1.2.7
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 2.1.2.7.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.1.2.7.1.1
Возведение в любую положительную степень дает .
Этап 2.1.2.7.1.2
Добавим и .
Этап 2.1.2.7.1.3
Умножим на .
Этап 2.1.2.7.1.4
Умножим на .
Этап 2.1.2.7.2
Добавим и .
Этап 2.1.3
Найдем предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 2.1.3.1
Разобьем предел с помощью правила произведения пределов при стремлении к .
Этап 2.1.3.2
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 2.1.3.3
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 2.1.3.4
Найдем значения пределов, подставив значение для всех вхождений .
Нажмите для увеличения количества этапов...
Этап 2.1.3.4.1
Найдем предел , подставив значение для .
Этап 2.1.3.4.2
Найдем предел , подставив значение для .
Этап 2.1.3.4.3
Найдем предел , подставив значение для .
Этап 2.1.3.5
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 2.1.3.5.1
Возведение в любую положительную степень дает .
Этап 2.1.3.5.2
Добавим и .
Этап 2.1.3.5.3
Умножим на .
Этап 2.1.3.5.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 2.1.3.6
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 2.1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 2.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 2.3
Найдем производную числителя и знаменателя.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Продифференцируем числитель и знаменатель.
Этап 2.3.2
По правилу суммы производная по имеет вид .
Этап 2.3.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.3.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.3.2
По правилу суммы производная по имеет вид .
Этап 2.3.3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.4
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.3.4.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.4.3
Умножим на .
Этап 2.3.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.5.1
Применим свойство дистрибутивности.
Этап 2.3.5.2
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 2.3.5.2.1
Умножим на .
Этап 2.3.5.2.2
Умножим на .
Этап 2.3.5.2.3
Вычтем из .
Этап 2.3.5.2.4
Добавим и .
Этап 2.3.6
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2.3.7
По правилу суммы производная по имеет вид .
Этап 2.3.8
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.9
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.10
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.11
Умножим на .
Этап 2.3.12
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.12.1
Применим свойство дистрибутивности.
Этап 2.3.12.2
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 2.3.12.2.1
Возведем в степень .
Этап 2.3.12.2.2
Возведем в степень .
Этап 2.3.12.2.3
Применим правило степени для объединения показателей.
Этап 2.3.12.2.4
Добавим и .
Этап 2.3.12.2.5
Умножим на .
Этап 2.3.12.2.6
Добавим и .
Этап 2.3.12.2.7
Добавим и .
Этап 3
Вынесем член из-под знака предела, так как он не зависит от .
Этап 4
Применим правило Лопиталя.
Нажмите для увеличения количества этапов...
Этап 4.1
Найдем предел числителя и предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 4.1.1
Возьмем предел числителя и предел знаменателя.
Этап 4.1.2
Найдем предел , подставив значение для .
Этап 4.1.3
Найдем предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 4.1.3.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 4.1.3.2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 4.1.3.3
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 4.1.3.4
Вынесем член из-под знака предела, так как он не зависит от .
Этап 4.1.3.5
Найдем значения пределов, подставив значение для всех вхождений .
Нажмите для увеличения количества этапов...
Этап 4.1.3.5.1
Найдем предел , подставив значение для .
Этап 4.1.3.5.2
Найдем предел , подставив значение для .
Этап 4.1.3.6
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 4.1.3.6.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.1.3.6.1.1
Возведение в любую положительную степень дает .
Этап 4.1.3.6.1.2
Умножим на .
Этап 4.1.3.6.1.3
Умножим на .
Этап 4.1.3.6.2
Добавим и .
Этап 4.1.3.6.3
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 4.1.3.7
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 4.1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 4.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 4.3
Найдем производную числителя и знаменателя.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Продифференцируем числитель и знаменатель.
Этап 4.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.3.3
По правилу суммы производная по имеет вид .
Этап 4.3.4
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 4.3.4.1
Поскольку является константой относительно , производная по равна .
Этап 4.3.4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.3.4.3
Умножим на .
Этап 4.3.5
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 4.3.5.1
Поскольку является константой относительно , производная по равна .
Этап 4.3.5.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.3.5.3
Умножим на .
Этап 5
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 5.1
Разобьем предел с помощью правила частного пределов при стремлении к .
Этап 5.2
Найдем предел , который является константой по мере приближения к .
Этап 5.3
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 5.4
Вынесем член из-под знака предела, так как он не зависит от .
Этап 5.5
Найдем предел , который является константой по мере приближения к .
Этап 6
Найдем предел , подставив значение для .
Этап 7
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 7.1
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 7.1.1
Умножим на .
Этап 7.1.2
Добавим и .
Этап 7.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 7.2.1
Вынесем множитель из .
Этап 7.2.2
Сократим общий множитель.
Этап 7.2.3
Перепишем это выражение.