Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Найдем предел числителя и предел знаменателя.
Этап 1.1.1
Возьмем предел числителя и предел знаменателя.
Этап 1.1.2
Найдем предел числителя.
Этап 1.1.2.1
Вычислим предел.
Этап 1.1.2.1.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.1.2.1.2
Внесем предел под знак радикала.
Этап 1.1.2.1.3
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.1.2.1.4
Найдем предел , который является константой по мере приближения к .
Этап 1.1.2.1.5
Найдем предел , который является константой по мере приближения к .
Этап 1.1.2.2
Найдем предел , подставив значение для .
Этап 1.1.2.3
Упростим ответ.
Этап 1.1.2.3.1
Упростим каждый член.
Этап 1.1.2.3.1.1
Добавим и .
Этап 1.1.2.3.1.2
Перепишем в виде .
Этап 1.1.2.3.1.3
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 1.1.2.3.1.4
Умножим на .
Этап 1.1.2.3.2
Вычтем из .
Этап 1.1.3
Найдем предел знаменателя.
Этап 1.1.3.1
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 1.1.3.2
Найдем предел , подставив значение для .
Этап 1.1.3.3
Возведение в любую положительную степень дает .
Этап 1.1.3.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 1.3
Найдем производную числителя и знаменателя.
Этап 1.3.1
Продифференцируем числитель и знаменатель.
Этап 1.3.2
По правилу суммы производная по имеет вид .
Этап 1.3.3
Найдем значение .
Этап 1.3.3.1
С помощью запишем в виде .
Этап 1.3.3.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 1.3.3.2.1
Чтобы применить цепное правило, зададим как .
Этап 1.3.3.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.3.2.3
Заменим все вхождения на .
Этап 1.3.3.3
По правилу суммы производная по имеет вид .
Этап 1.3.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.3.5
Поскольку является константой относительно , производная относительно равна .
Этап 1.3.3.6
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.3.3.7
Объединим и .
Этап 1.3.3.8
Объединим числители над общим знаменателем.
Этап 1.3.3.9
Упростим числитель.
Этап 1.3.3.9.1
Умножим на .
Этап 1.3.3.9.2
Вычтем из .
Этап 1.3.3.10
Вынесем знак минуса перед дробью.
Этап 1.3.3.11
Добавим и .
Этап 1.3.3.12
Объединим и .
Этап 1.3.3.13
Умножим на .
Этап 1.3.3.14
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 1.3.4
Поскольку является константой относительно , производная относительно равна .
Этап 1.3.5
Добавим и .
Этап 1.3.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.4
Умножим числитель на величину, обратную знаменателю.
Этап 1.5
Перепишем в виде .
Этап 1.6
Объединим множители.
Этап 1.6.1
Умножим на .
Этап 1.6.2
Умножим на .
Этап 2
Поскольку эта функция стремится к слева, а к справа, предел не существует.