Математический анализ Примеры

Оценить предел предел ((1+2x)^(1/3)-1)/x, если x стремится к 0
Этап 1
Перепишем в виде .
Этап 2
Применим правило Лопиталя.
Нажмите для увеличения количества этапов...
Этап 2.1
Найдем предел числителя и предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 2.1.1
Возьмем предел числителя и предел знаменателя.
Этап 2.1.2
Найдем предел числителя.
Нажмите для увеличения количества этапов...
Этап 2.1.2.1
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 2.1.2.1.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 2.1.2.1.2
Внесем предел под знак радикала.
Этап 2.1.2.1.3
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 2.1.2.1.4
Найдем предел , который является константой по мере приближения к .
Этап 2.1.2.1.5
Вынесем член из-под знака предела, так как он не зависит от .
Этап 2.1.2.1.6
Найдем предел , который является константой по мере приближения к .
Этап 2.1.2.2
Найдем предел , подставив значение для .
Этап 2.1.2.3
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 2.1.2.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.1.2.3.1.1
Умножим на .
Этап 2.1.2.3.1.2
Добавим и .
Этап 2.1.2.3.1.3
Любой корень из равен .
Этап 2.1.2.3.1.4
Умножим на .
Этап 2.1.2.3.2
Вычтем из .
Этап 2.1.3
Найдем предел , подставив значение для .
Этап 2.1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 2.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 2.3
Найдем производную числителя и знаменателя.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Продифференцируем числитель и знаменатель.
Этап 2.3.2
По правилу суммы производная по имеет вид .
Этап 2.3.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.3.3.1
С помощью запишем в виде .
Этап 2.3.3.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.3.3.2.1
Чтобы применить цепное правило, зададим как .
Этап 2.3.3.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.3.2.3
Заменим все вхождения на .
Этап 2.3.3.3
По правилу суммы производная по имеет вид .
Этап 2.3.3.4
Поскольку является константой относительно , производная относительно равна .
Этап 2.3.3.5
Поскольку является константой относительно , производная по равна .
Этап 2.3.3.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.3.7
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 2.3.3.8
Объединим и .
Этап 2.3.3.9
Объединим числители над общим знаменателем.
Этап 2.3.3.10
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.3.3.10.1
Умножим на .
Этап 2.3.3.10.2
Вычтем из .
Этап 2.3.3.11
Вынесем знак минуса перед дробью.
Этап 2.3.3.12
Умножим на .
Этап 2.3.3.13
Добавим и .
Этап 2.3.3.14
Объединим и .
Этап 2.3.3.15
Объединим и .
Этап 2.3.3.16
Перенесем влево от .
Этап 2.3.3.17
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 2.3.4
Поскольку является константой относительно , производная относительно равна .
Этап 2.3.5
Добавим и .
Этап 2.3.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.4
Умножим числитель на величину, обратную знаменателю.
Этап 2.5
Умножим на .
Этап 3
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 3.1
Вынесем член из-под знака предела, так как он не зависит от .
Этап 3.2
Разобьем предел с помощью правила частного пределов при стремлении к .
Этап 3.3
Найдем предел , который является константой по мере приближения к .
Этап 3.4
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 3.5
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 3.6
Найдем предел , который является константой по мере приближения к .
Этап 3.7
Вынесем член из-под знака предела, так как он не зависит от .
Этап 4
Найдем предел , подставив значение для .
Этап 5
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 5.1
Объединим.
Этап 5.2
Умножим на .
Этап 5.3
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 5.3.1
Умножим на .
Этап 5.3.2
Добавим и .
Этап 5.3.3
Единица в любой степени равна единице.
Этап 5.4
Умножим на .
Этап 6
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: