Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Найдем предел числителя и предел знаменателя.
Этап 1.1.1
Возьмем предел числителя и предел знаменателя.
Этап 1.1.2
Найдем предел числителя.
Этап 1.1.2.1
Перенесем предел внутрь тригонометрической функции, поскольку синус является непрерывной функцией.
Этап 1.1.2.2
Найдем предел , подставив значение для .
Этап 1.1.2.3
Точное значение : .
Этап 1.1.3
Найдем предел знаменателя.
Этап 1.1.3.1
Вычислим предел.
Этап 1.1.3.1.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.1.3.1.2
Найдем предел , который является константой по мере приближения к .
Этап 1.1.3.1.3
Перенесем предел внутрь тригонометрической функции, поскольку косинус является непрерывной функцией.
Этап 1.1.3.2
Найдем предел , подставив значение для .
Этап 1.1.3.3
Упростим ответ.
Этап 1.1.3.3.1
Упростим каждый член.
Этап 1.1.3.3.1.1
Точное значение : .
Этап 1.1.3.3.1.2
Умножим на .
Этап 1.1.3.3.2
Вычтем из .
Этап 1.1.3.3.3
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.1.3.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 1.3
Найдем производную числителя и знаменателя.
Этап 1.3.1
Продифференцируем числитель и знаменатель.
Этап 1.3.2
Производная по равна .
Этап 1.3.3
По правилу суммы производная по имеет вид .
Этап 1.3.4
Поскольку является константой относительно , производная относительно равна .
Этап 1.3.5
Найдем значение .
Этап 1.3.5.1
Поскольку является константой относительно , производная по равна .
Этап 1.3.5.2
Производная по равна .
Этап 1.3.5.3
Умножим на .
Этап 1.3.5.4
Умножим на .
Этап 1.3.6
Добавим и .
Этап 2
Поскольку эта функция стремится к слева, а к справа, предел не существует.