Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Найдем предел числителя и предел знаменателя.
Этап 1.1.1
Возьмем предел числителя и предел знаменателя.
Этап 1.1.2
Найдем предел числителя.
Этап 1.1.2.1
Разобьем предел с помощью правила произведения пределов при стремлении к .
Этап 1.1.2.2
Внесем предел под знак экспоненты.
Этап 1.1.2.3
Найдем значения пределов, подставив значение для всех вхождений .
Этап 1.1.2.3.1
Найдем предел , подставив значение для .
Этап 1.1.2.3.2
Найдем предел , подставив значение для .
Этап 1.1.2.4
Упростим ответ.
Этап 1.1.2.4.1
Любое число в степени равно .
Этап 1.1.2.4.2
Умножим на .
Этап 1.1.3
Найдем предел знаменателя.
Этап 1.1.3.1
Вычислим предел.
Этап 1.1.3.1.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.1.3.1.2
Внесем предел под знак экспоненты.
Этап 1.1.3.1.3
Найдем предел , который является константой по мере приближения к .
Этап 1.1.3.2
Найдем предел , подставив значение для .
Этап 1.1.3.3
Упростим ответ.
Этап 1.1.3.3.1
Упростим каждый член.
Этап 1.1.3.3.1.1
Любое число в степени равно .
Этап 1.1.3.3.1.2
Умножим на .
Этап 1.1.3.3.2
Вычтем из .
Этап 1.1.3.3.3
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.1.3.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 1.3
Найдем производную числителя и знаменателя.
Этап 1.3.1
Продифференцируем числитель и знаменатель.
Этап 1.3.2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 1.3.3
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 1.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.5
Умножим на .
Этап 1.3.6
Упростим.
Этап 1.3.6.1
Изменим порядок членов.
Этап 1.3.6.2
Изменим порядок множителей в .
Этап 1.3.7
По правилу суммы производная по имеет вид .
Этап 1.3.8
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 1.3.9
Поскольку является константой относительно , производная относительно равна .
Этап 1.3.10
Добавим и .
Этап 2
Этап 2.1
Вынесем член из-под знака предела, так как он не зависит от .
Этап 2.2
Разобьем предел с помощью правила частного пределов при стремлении к .
Этап 2.3
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 2.4
Вынесем член из-под знака предела, так как он не зависит от .
Этап 2.5
Разобьем предел с помощью правила произведения пределов при стремлении к .
Этап 2.6
Внесем предел под знак экспоненты.
Этап 2.7
Внесем предел под знак экспоненты.
Этап 2.8
Внесем предел под знак экспоненты.
Этап 3
Этап 3.1
Найдем предел , подставив значение для .
Этап 3.2
Найдем предел , подставив значение для .
Этап 3.3
Найдем предел , подставив значение для .
Этап 3.4
Найдем предел , подставив значение для .
Этап 4
Этап 4.1
Упростим числитель.
Этап 4.1.1
Умножим на .
Этап 4.1.2
Любое число в степени равно .
Этап 4.1.3
Умножим на .
Этап 4.1.4
Любое число в степени равно .
Этап 4.1.5
Добавим и .
Этап 4.2
Любое число в степени равно .
Этап 4.3
Сократим общий множитель .
Этап 4.3.1
Сократим общий множитель.
Этап 4.3.2
Перепишем это выражение.
Этап 4.4
Умножим на .
Этап 5
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: