Математический анализ Примеры

Оценить предел предел ( натуральный логарифм 1+x-sin(x))/(xsin(x)), когда x стремится к 0
Этап 1
Применим правило Лопиталя.
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем предел числителя и предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Возьмем предел числителя и предел знаменателя.
Этап 1.1.2
Найдем предел числителя.
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.1.2.2
Внесем предел под знак логарифма.
Этап 1.1.2.3
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.1.2.4
Найдем предел , который является константой по мере приближения к .
Этап 1.1.2.5
Перенесем предел внутрь тригонометрической функции, поскольку синус является непрерывной функцией.
Этап 1.1.2.6
Найдем значения пределов, подставив значение для всех вхождений .
Нажмите для увеличения количества этапов...
Этап 1.1.2.6.1
Найдем предел , подставив значение для .
Этап 1.1.2.6.2
Найдем предел , подставив значение для .
Этап 1.1.2.7
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 1.1.2.7.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.1.2.7.1.1
Добавим и .
Этап 1.1.2.7.1.2
Натуральный логарифм равен .
Этап 1.1.2.7.1.3
Точное значение : .
Этап 1.1.2.7.1.4
Умножим на .
Этап 1.1.2.7.2
Добавим и .
Этап 1.1.3
Найдем предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.1.3.1
Разобьем предел с помощью правила произведения пределов при стремлении к .
Этап 1.1.3.2
Перенесем предел внутрь тригонометрической функции, поскольку синус является непрерывной функцией.
Этап 1.1.3.3
Найдем значения пределов, подставив значение для всех вхождений .
Нажмите для увеличения количества этапов...
Этап 1.1.3.3.1
Найдем предел , подставив значение для .
Этап 1.1.3.3.2
Найдем предел , подставив значение для .
Этап 1.1.3.4
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 1.1.3.4.1
Точное значение : .
Этап 1.1.3.4.2
Умножим на .
Этап 1.1.3.4.3
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.1.3.5
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 1.3
Найдем производную числителя и знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Продифференцируем числитель и знаменатель.
Этап 1.3.2
По правилу суммы производная по имеет вид .
Этап 1.3.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.3.3.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.3.3.1.1
Чтобы применить цепное правило, зададим как .
Этап 1.3.3.1.2
Производная по равна .
Этап 1.3.3.1.3
Заменим все вхождения на .
Этап 1.3.3.2
По правилу суммы производная по имеет вид .
Этап 1.3.3.3
Поскольку является константой относительно , производная относительно равна .
Этап 1.3.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.3.5
Добавим и .
Этап 1.3.3.6
Умножим на .
Этап 1.3.4
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.3.4.1
Поскольку является константой относительно , производная по равна .
Этап 1.3.4.2
Производная по равна .
Этап 1.3.5
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 1.3.6
Производная по равна .
Этап 1.3.7
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.8
Умножим на .
Этап 2
Применим правило Лопиталя.
Нажмите для увеличения количества этапов...
Этап 2.1
Найдем предел числителя и предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 2.1.1
Возьмем предел числителя и предел знаменателя.
Этап 2.1.2
Найдем предел числителя.
Нажмите для увеличения количества этапов...
Этап 2.1.2.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 2.1.2.2
Разобьем предел с помощью правила частного пределов при стремлении к .
Этап 2.1.2.3
Найдем предел , который является константой по мере приближения к .
Этап 2.1.2.4
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 2.1.2.5
Найдем предел , который является константой по мере приближения к .
Этап 2.1.2.6
Перенесем предел внутрь тригонометрической функции, поскольку косинус является непрерывной функцией.
Этап 2.1.2.7
Найдем значения пределов, подставив значение для всех вхождений .
Нажмите для увеличения количества этапов...
Этап 2.1.2.7.1
Найдем предел , подставив значение для .
Этап 2.1.2.7.2
Найдем предел , подставив значение для .
Этап 2.1.2.8
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 2.1.2.8.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.1.2.8.1.1
Добавим и .
Этап 2.1.2.8.1.2
Разделим на .
Этап 2.1.2.8.1.3
Точное значение : .
Этап 2.1.2.8.1.4
Умножим на .
Этап 2.1.2.8.2
Вычтем из .
Этап 2.1.3
Найдем предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 2.1.3.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 2.1.3.2
Разобьем предел с помощью правила произведения пределов при стремлении к .
Этап 2.1.3.3
Перенесем предел внутрь тригонометрической функции, поскольку косинус является непрерывной функцией.
Этап 2.1.3.4
Перенесем предел внутрь тригонометрической функции, поскольку синус является непрерывной функцией.
Этап 2.1.3.5
Найдем значения пределов, подставив значение для всех вхождений .
Нажмите для увеличения количества этапов...
Этап 2.1.3.5.1
Найдем предел , подставив значение для .
Этап 2.1.3.5.2
Найдем предел , подставив значение для .
Этап 2.1.3.5.3
Найдем предел , подставив значение для .
Этап 2.1.3.6
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 2.1.3.6.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.1.3.6.1.1
Точное значение : .
Этап 2.1.3.6.1.2
Умножим на .
Этап 2.1.3.6.1.3
Точное значение : .
Этап 2.1.3.6.2
Добавим и .
Этап 2.1.3.6.3
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 2.1.3.7
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 2.1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 2.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 2.3
Найдем производную числителя и знаменателя.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Продифференцируем числитель и знаменатель.
Этап 2.3.2
По правилу суммы производная по имеет вид .
Этап 2.3.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.3.3.1
Перепишем в виде .
Этап 2.3.3.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.3.3.2.1
Чтобы применить цепное правило, зададим как .
Этап 2.3.3.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.3.2.3
Заменим все вхождения на .
Этап 2.3.3.3
По правилу суммы производная по имеет вид .
Этап 2.3.3.4
Поскольку является константой относительно , производная относительно равна .
Этап 2.3.3.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.3.6
Добавим и .
Этап 2.3.3.7
Умножим на .
Этап 2.3.4
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.3.4.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.4.2
Производная по равна .
Этап 2.3.4.3
Умножим на .
Этап 2.3.4.4
Умножим на .
Этап 2.3.5
Перепишем выражение, используя правило отрицательных степеней .
Этап 2.3.6
По правилу суммы производная по имеет вид .
Этап 2.3.7
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.3.7.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2.3.7.2
Производная по равна .
Этап 2.3.7.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.7.4
Умножим на .
Этап 2.3.8
Производная по равна .
Этап 2.3.9
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.9.1
Добавим и .
Этап 2.3.9.2
Изменим порядок членов.
Этап 3
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 3.1
Разобьем предел с помощью правила частного пределов при стремлении к .
Этап 3.2
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 3.3
Разобьем предел с помощью правила частного пределов при стремлении к .
Этап 3.4
Найдем предел , который является константой по мере приближения к .
Этап 3.5
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 3.6
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 3.7
Найдем предел , который является константой по мере приближения к .
Этап 3.8
Перенесем предел внутрь тригонометрической функции, поскольку синус является непрерывной функцией.
Этап 3.9
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 3.10
Разобьем предел с помощью правила произведения пределов при стремлении к .
Этап 3.11
Перенесем предел внутрь тригонометрической функции, поскольку синус является непрерывной функцией.
Этап 3.12
Вынесем член из-под знака предела, так как он не зависит от .
Этап 3.13
Перенесем предел внутрь тригонометрической функции, поскольку косинус является непрерывной функцией.
Этап 4
Найдем значения пределов, подставив значение для всех вхождений .
Нажмите для увеличения количества этапов...
Этап 4.1
Найдем предел , подставив значение для .
Этап 4.2
Найдем предел , подставив значение для .
Этап 4.3
Найдем предел , подставив значение для .
Этап 4.4
Найдем предел , подставив значение для .
Этап 4.5
Найдем предел , подставив значение для .
Этап 5
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 5.1
Multiply the numerator and denominator of the fraction by .
Нажмите для увеличения количества этапов...
Этап 5.1.1
Умножим на .
Этап 5.1.2
Объединим.
Этап 5.2
Применим свойство дистрибутивности.
Этап 5.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.3.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 5.3.2
Сократим общий множитель.
Этап 5.3.3
Перепишем это выражение.
Этап 5.4
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 5.4.1
Добавим и .
Этап 5.4.2
Единица в любой степени равна единице.
Этап 5.4.3
Умножим на .
Этап 5.4.4
Точное значение : .
Этап 5.4.5
Добавим и .
Этап 5.5
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 5.5.1
Добавим и .
Этап 5.5.2
Единица в любой степени равна единице.
Этап 5.5.3
Умножим на .
Этап 5.5.4
Точное значение : .
Этап 5.5.5
Умножим на .
Этап 5.5.6
Добавим и .
Этап 5.5.7
Единица в любой степени равна единице.
Этап 5.5.8
Умножим на .
Этап 5.5.9
Точное значение : .
Этап 5.5.10
Умножим на .
Этап 5.5.11
Добавим и .
Этап 5.6
Вынесем знак минуса перед дробью.
Этап 6
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: