Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Найдем предел числителя и предел знаменателя.
Этап 1.1.1
Возьмем предел числителя и предел знаменателя.
Этап 1.1.2
Найдем предел числителя.
Этап 1.1.2.1
Вычислим предел.
Этап 1.1.2.1.1
Внесем предел под знак логарифма.
Этап 1.1.2.1.2
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 1.1.2.2
Найдем предел , подставив значение для .
Этап 1.1.2.3
Упростим ответ.
Этап 1.1.2.3.1
Единица в любой степени равна единице.
Этап 1.1.2.3.2
Натуральный логарифм равен .
Этап 1.1.3
Найдем предел знаменателя.
Этап 1.1.3.1
Вычислим предел.
Этап 1.1.3.1.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.1.3.1.2
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 1.1.3.1.3
Найдем предел , который является константой по мере приближения к .
Этап 1.1.3.2
Найдем предел , подставив значение для .
Этап 1.1.3.3
Упростим ответ.
Этап 1.1.3.3.1
Упростим каждый член.
Этап 1.1.3.3.1.1
Единица в любой степени равна единице.
Этап 1.1.3.3.1.2
Умножим на .
Этап 1.1.3.3.2
Вычтем из .
Этап 1.1.3.3.3
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.1.3.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 1.3
Найдем производную числителя и знаменателя.
Этап 1.3.1
Продифференцируем числитель и знаменатель.
Этап 1.3.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 1.3.2.1
Чтобы применить цепное правило, зададим как .
Этап 1.3.2.2
Производная по равна .
Этап 1.3.2.3
Заменим все вхождения на .
Этап 1.3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.4
Объединим и .
Этап 1.3.5
Объединим и .
Этап 1.3.6
Сократим общий множитель и .
Этап 1.3.6.1
Вынесем множитель из .
Этап 1.3.6.2
Сократим общие множители.
Этап 1.3.6.2.1
Вынесем множитель из .
Этап 1.3.6.2.2
Сократим общий множитель.
Этап 1.3.6.2.3
Перепишем это выражение.
Этап 1.3.7
По правилу суммы производная по имеет вид .
Этап 1.3.8
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.9
Поскольку является константой относительно , производная относительно равна .
Этап 1.3.10
Добавим и .
Этап 1.4
Умножим числитель на величину, обратную знаменателю.
Этап 1.5
Объединим множители.
Этап 1.5.1
Умножим на .
Этап 1.5.2
Возведем в степень .
Этап 1.5.3
Возведем в степень .
Этап 1.5.4
Применим правило степени для объединения показателей.
Этап 1.5.5
Добавим и .
Этап 1.6
Сократим общий множитель .
Этап 1.6.1
Сократим общий множитель.
Этап 1.6.2
Перепишем это выражение.
Этап 2
Этап 2.1
Разобьем предел с помощью правила частного пределов при стремлении к .
Этап 2.2
Найдем предел , который является константой по мере приближения к .
Этап 2.3
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 3
Найдем предел , подставив значение для .
Этап 4
Этап 4.1
Единица в любой степени равна единице.
Этап 4.2
Разделим на .