Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Найдем предел числителя и предел знаменателя.
Этап 1.1.1
Возьмем предел числителя и предел знаменателя.
Этап 1.1.2
Найдем предел числителя.
Этап 1.1.2.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.1.2.2
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 1.1.2.3
Вынесем член из-под знака предела, так как он не зависит от .
Этап 1.1.2.4
Найдем предел , который является константой по мере приближения к .
Этап 1.1.2.5
Найдем значения пределов, подставив значение для всех вхождений .
Этап 1.1.2.5.1
Найдем предел , подставив значение для .
Этап 1.1.2.5.2
Найдем предел , подставив значение для .
Этап 1.1.2.6
Упростим ответ.
Этап 1.1.2.6.1
Упростим каждый член.
Этап 1.1.2.6.1.1
Возведем в степень .
Этап 1.1.2.6.1.2
Умножим на .
Этап 1.1.2.6.2
Вычтем из .
Этап 1.1.2.6.3
Добавим и .
Этап 1.1.3
Найдем предел знаменателя.
Этап 1.1.3.1
Вычислим предел.
Этап 1.1.3.1.1
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 1.1.3.1.2
Перенесем предел внутрь тригонометрической функции, поскольку синус является непрерывной функцией.
Этап 1.1.3.1.3
Вынесем член из-под знака предела, так как он не зависит от .
Этап 1.1.3.2
Найдем предел , подставив значение для .
Этап 1.1.3.3
Упростим ответ.
Этап 1.1.3.3.1
Перенесем влево от .
Этап 1.1.3.3.2
Удалим число полных оборотов , чтобы угол оказался больше или равен и меньше .
Этап 1.1.3.3.3
Точное значение : .
Этап 1.1.3.3.4
Возведение в любую положительную степень дает .
Этап 1.1.3.3.5
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.1.3.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 1.3
Найдем производную числителя и знаменателя.
Этап 1.3.1
Продифференцируем числитель и знаменатель.
Этап 1.3.2
По правилу суммы производная по имеет вид .
Этап 1.3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.4
Найдем значение .
Этап 1.3.4.1
Поскольку является константой относительно , производная по равна .
Этап 1.3.4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.4.3
Умножим на .
Этап 1.3.5
Поскольку является константой относительно , производная относительно равна .
Этап 1.3.6
Добавим и .
Этап 1.3.7
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 1.3.7.1
Чтобы применить цепное правило, зададим как .
Этап 1.3.7.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.7.3
Заменим все вхождения на .
Этап 1.3.8
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 1.3.8.1
Чтобы применить цепное правило, зададим как .
Этап 1.3.8.2
Производная по равна .
Этап 1.3.8.3
Заменим все вхождения на .
Этап 1.3.9
Поскольку является константой относительно , производная по равна .
Этап 1.3.10
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.11
Умножим на .
Этап 1.3.12
Упростим.
Этап 1.3.12.1
Изменим порядок множителей в .
Этап 1.3.12.2
Добавим круглые скобки.
Этап 1.3.12.3
Изменим порядок и .
Этап 1.3.12.4
Добавим круглые скобки.
Этап 1.3.12.5
Изменим порядок и .
Этап 1.3.12.6
Изменим порядок и .
Этап 1.3.12.7
Применим формулу двойного угла для синуса.
Этап 1.3.12.8
Изменим порядок множителей в .
Этап 2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 3
Этап 3.1
Найдем предел числителя и предел знаменателя.
Этап 3.1.1
Возьмем предел числителя и предел знаменателя.
Этап 3.1.2
Найдем предел числителя.
Этап 3.1.2.1
Вычислим предел.
Этап 3.1.2.1.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 3.1.2.1.2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 3.1.2.1.3
Найдем предел , который является константой по мере приближения к .
Этап 3.1.2.2
Найдем предел , подставив значение для .
Этап 3.1.2.3
Упростим ответ.
Этап 3.1.2.3.1
Упростим каждый член.
Этап 3.1.2.3.1.1
Умножим на .
Этап 3.1.2.3.1.2
Умножим на .
Этап 3.1.2.3.2
Вычтем из .
Этап 3.1.3
Найдем предел знаменателя.
Этап 3.1.3.1
Вычислим предел.
Этап 3.1.3.1.1
Перенесем предел внутрь тригонометрической функции, поскольку синус является непрерывной функцией.
Этап 3.1.3.1.2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 3.1.3.2
Найдем предел , подставив значение для .
Этап 3.1.3.3
Упростим ответ.
Этап 3.1.3.3.1
Умножим на .
Этап 3.1.3.3.2
Удалим число полных оборотов , чтобы угол оказался больше или равен и меньше .
Этап 3.1.3.3.3
Точное значение : .
Этап 3.1.3.3.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 3.1.3.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 3.1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 3.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 3.3
Найдем производную числителя и знаменателя.
Этап 3.3.1
Продифференцируем числитель и знаменатель.
Этап 3.3.2
По правилу суммы производная по имеет вид .
Этап 3.3.3
Найдем значение .
Этап 3.3.3.1
Поскольку является константой относительно , производная по равна .
Этап 3.3.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3.3.3
Умножим на .
Этап 3.3.4
Поскольку является константой относительно , производная относительно равна .
Этап 3.3.5
Добавим и .
Этап 3.3.6
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 3.3.6.1
Чтобы применить цепное правило, зададим как .
Этап 3.3.6.2
Производная по равна .
Этап 3.3.6.3
Заменим все вхождения на .
Этап 3.3.7
Поскольку является константой относительно , производная по равна .
Этап 3.3.8
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3.9
Умножим на .
Этап 3.3.10
Перенесем влево от .
Этап 3.3.11
Изменим порядок множителей в .
Этап 3.4
Сократим общий множитель .
Этап 3.4.1
Сократим общий множитель.
Этап 3.4.2
Перепишем это выражение.
Этап 4
Этап 4.1
Вынесем член из-под знака предела, так как он не зависит от .
Этап 4.2
Разобьем предел с помощью правила частного пределов при стремлении к .
Этап 4.3
Найдем предел , который является константой по мере приближения к .
Этап 4.4
Перенесем предел внутрь тригонометрической функции, поскольку косинус является непрерывной функцией.
Этап 4.5
Вынесем член из-под знака предела, так как он не зависит от .
Этап 5
Найдем предел , подставив значение для .
Этап 6
Этап 6.1
Умножим .
Этап 6.1.1
Умножим на .
Этап 6.1.2
Возведем в степень .
Этап 6.1.3
Возведем в степень .
Этап 6.1.4
Применим правило степени для объединения показателей.
Этап 6.1.5
Добавим и .
Этап 6.2
Объединим.
Этап 6.3
Умножим на .
Этап 6.4
Упростим знаменатель.
Этап 6.4.1
Умножим на .
Этап 6.4.2
Удалим число полных оборотов , чтобы угол оказался больше или равен и меньше .
Этап 6.4.3
Точное значение : .
Этап 6.5
Умножим на .
Этап 7
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: