Введите задачу...
Математический анализ Примеры
, ,
Этап 1
Этап 1.1
Исключим равные части каждого уравнения и объединим.
Этап 1.2
Решим относительно .
Этап 1.2.1
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 1.2.2
Упростим правую часть.
Этап 1.2.2.1
Точное значение : .
Этап 1.2.3
Функция синуса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
Этап 1.2.4
Вычтем из .
Этап 1.2.5
Найдем период .
Этап 1.2.5.1
Период функции можно вычислить по формуле .
Этап 1.2.5.2
Заменим на в формуле периода.
Этап 1.2.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 1.2.5.4
Разделим на .
Этап 1.2.6
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
Этап 1.2.7
Объединим ответы.
, для любого целого
, для любого целого
Этап 1.3
Подставим вместо .
Этап 1.4
Перечислим все решения.
Этап 2
Площадь области между кривыми определяется как интеграл верхней кривой минус интеграл нижней кривой по каждой области. Области определяются точками пересечения кривых. Это можно сделать алгебраически или графически.
Этап 3
Этап 3.1
Объединим интегралы в один интеграл.
Этап 3.2
Вычтем из .
Этап 3.3
Интеграл по имеет вид .
Этап 3.4
Упростим ответ.
Этап 3.4.1
Найдем значение в и в .
Этап 3.4.2
Точное значение : .
Этап 3.4.3
Упростим.
Этап 3.4.3.1
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте. Добавим минус к выражению, так как косинус отрицательный во втором квадранте.
Этап 3.4.3.2
Точное значение : .
Этап 3.4.3.3
Умножим на .
Этап 3.4.3.4
Умножим на .
Этап 3.4.3.5
Добавим и .
Этап 4