Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Вертикальные асимптоты функции находятся в точках , где — целое число. Используя основной период для , найдем вертикальные асимптоты для . Положив аргумент тангенса, , равным в выражении , найдем положение вертикальной асимптоты для .
Этап 1.2
Приравняем аргумент функции тангенса к .
Этап 1.3
Основной период находится на промежутке , где и являются вертикальными асимптотами.
Этап 1.4
Найдем период , чтобы найти, где находятся вертикальные асимптоты.
Этап 1.4.1
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 1.4.2
Разделим на .
Этап 1.5
Вертикальные асимптоты расположены в , и в каждой точке , где — целое число.
Этап 1.6
У функций тангенса и котангенса есть только вертикальные асимптоты.
Вертикальные асимптоты: для всех целых
Нет горизонтальных асимптот
Нет наклонных асимптот
Вертикальные асимптоты: для всех целых
Нет горизонтальных асимптот
Нет наклонных асимптот
Этап 2
Этап 2.1
Заменим в этом выражении переменную на .
Этап 2.2
Упростим результат.
Этап 2.2.1
Натуральный логарифм равен .
Этап 2.2.2
Точное значение : .
Этап 2.2.3
Окончательный ответ: .
Этап 2.3
Преобразуем в десятичное представление.
Этап 3
Этап 3.1
Заменим в этом выражении переменную на .
Этап 3.2
Упростим результат.
Этап 3.2.1
Найдем значение .
Этап 3.2.2
Окончательный ответ: .
Этап 4
Этап 4.1
Заменим в этом выражении переменную на .
Этап 4.2
Упростим результат.
Этап 4.2.1
Найдем значение .
Этап 4.2.2
Окончательный ответ: .
Этап 5
График логарифмической функции можно построить с помощью вертикальной асимптоты в точке и точек .
Вертикальная асимптота:
Этап 6