Введите задачу...
Математический анализ Примеры
Этап 1
Избавимся от скобок.
Этап 2
Продифференцируем обе части уравнения.
Этап 3
Производная по равна .
Этап 4
Этап 4.1
По правилу суммы производная по имеет вид .
Этап 4.2
Найдем значение .
Этап 4.2.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 4.2.1.1
Чтобы применить цепное правило, зададим как .
Этап 4.2.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.2.1.3
Заменим все вхождения на .
Этап 4.2.2
Производная по равна .
Этап 4.2.3
Объединим и .
Этап 4.2.4
Объединим и .
Этап 4.3
Найдем значение .
Этап 4.3.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 4.3.1.1
Чтобы применить цепное правило, зададим как .
Этап 4.3.1.2
Производная по равна .
Этап 4.3.1.3
Заменим все вхождения на .
Этап 4.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.3.3
Объединим и .
Этап 4.3.4
Объединим и .
Этап 4.3.5
Сократим общий множитель и .
Этап 4.3.5.1
Вынесем множитель из .
Этап 4.3.5.2
Сократим общие множители.
Этап 4.3.5.2.1
Вынесем множитель из .
Этап 4.3.5.2.2
Сократим общий множитель.
Этап 4.3.5.2.3
Перепишем это выражение.
Этап 5
Преобразуем уравнение, приравняв левую часть к правой.
Этап 6
Заменим на .