Математический анализ Примеры

Risolvere per x x/4+2 квадратный корень из x+15=x
Этап 1
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 1.1
Вычтем из обеих частей уравнения.
Этап 1.2
Вычтем из обеих частей уравнения.
Этап 2
Чтобы избавиться от радикала в левой части уравнения, возведем обе части уравнения в квадрат.
Этап 3
Упростим каждую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.1
С помощью запишем в виде .
Этап 3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Применим правило умножения к .
Этап 3.2.1.2
Возведем в степень .
Этап 3.2.1.3
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 3.2.1.3.1
Применим правило степени и перемножим показатели, .
Этап 3.2.1.3.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.1.3.2.1
Сократим общий множитель.
Этап 3.2.1.3.2.2
Перепишем это выражение.
Этап 3.2.1.4
Упростим.
Этап 3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.3.1.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3.3.1.2
Объединим и .
Этап 3.3.1.3
Объединим числители над общим знаменателем.
Этап 3.3.1.4
Вычтем из .
Нажмите для увеличения количества этапов...
Этап 3.3.1.4.1
Изменим порядок и .
Этап 3.3.1.4.2
Вычтем из .
Этап 3.3.1.5
Перепишем в виде .
Этап 3.3.1.6
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 3.3.1.6.1
Применим свойство дистрибутивности.
Этап 3.3.1.6.2
Применим свойство дистрибутивности.
Этап 3.3.1.6.3
Применим свойство дистрибутивности.
Этап 3.3.1.7
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 3.3.1.7.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.3.1.7.1.1
Умножим .
Нажмите для увеличения количества этапов...
Этап 3.3.1.7.1.1.1
Умножим на .
Этап 3.3.1.7.1.1.2
Умножим на .
Этап 3.3.1.7.1.1.3
Возведем в степень .
Этап 3.3.1.7.1.1.4
Возведем в степень .
Этап 3.3.1.7.1.1.5
Применим правило степени для объединения показателей.
Этап 3.3.1.7.1.1.6
Добавим и .
Этап 3.3.1.7.1.1.7
Умножим на .
Этап 3.3.1.7.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 3.3.1.7.1.2.1
Объединим и .
Этап 3.3.1.7.1.2.2
Умножим на .
Этап 3.3.1.7.1.3
Вынесем знак минуса перед дробью.
Этап 3.3.1.7.1.4
Умножим .
Нажмите для увеличения количества этапов...
Этап 3.3.1.7.1.4.1
Объединим и .
Этап 3.3.1.7.1.4.2
Умножим на .
Этап 3.3.1.7.1.5
Вынесем знак минуса перед дробью.
Этап 3.3.1.7.1.6
Умножим на .
Этап 3.3.1.7.2
Вычтем из .
Этап 3.3.1.8
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.3.1.8.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.1.8.1.1
Вынесем множитель из .
Этап 3.3.1.8.1.2
Вынесем множитель из .
Этап 3.3.1.8.1.3
Сократим общий множитель.
Этап 3.3.1.8.1.4
Перепишем это выражение.
Этап 3.3.1.8.2
Перепишем в виде .
Этап 4
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.1
Поскольку находится в правой части уравнения, поменяем стороны так, чтобы оно оказалось в левой части уравнения.
Этап 4.2
Перенесем все члены с в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Вычтем из обеих частей уравнения.
Этап 4.2.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 4.2.3
Объединим и .
Этап 4.2.4
Объединим числители над общим знаменателем.
Этап 4.2.5
Найдем общий знаменатель.
Нажмите для увеличения количества этапов...
Этап 4.2.5.1
Умножим на .
Этап 4.2.5.2
Умножим на .
Этап 4.2.5.3
Запишем в виде дроби со знаменателем .
Этап 4.2.5.4
Умножим на .
Этап 4.2.5.5
Умножим на .
Этап 4.2.5.6
Умножим на .
Этап 4.2.6
Объединим числители над общим знаменателем.
Этап 4.2.7
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.2.7.1
Умножим на .
Этап 4.2.7.2
Вычтем из .
Этап 4.2.7.3
Умножим на .
Этап 4.2.7.4
Умножим на .
Этап 4.2.8
Разложим на множители методом группировки
Нажмите для увеличения количества этапов...
Этап 4.2.8.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Нажмите для увеличения количества этапов...
Этап 4.2.8.1.1
Вынесем множитель из .
Этап 4.2.8.1.2
Запишем как плюс
Этап 4.2.8.1.3
Применим свойство дистрибутивности.
Этап 4.2.8.2
Вынесем наибольший общий делитель из каждой группы.
Нажмите для увеличения количества этапов...
Этап 4.2.8.2.1
Сгруппируем первые два члена и последние два члена.
Этап 4.2.8.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 4.2.8.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 4.3
Приравняем числитель к нулю.
Этап 4.4
Решим уравнение относительно .
Нажмите для увеличения количества этапов...
Этап 4.4.1
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 4.4.2
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.4.2.1
Приравняем к .
Этап 4.4.2.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.4.2.2.1
Добавим к обеим частям уравнения.
Этап 4.4.2.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 4.4.2.2.2.1
Разделим каждый член на .
Этап 4.4.2.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.4.2.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.4.2.2.2.2.1.1
Сократим общий множитель.
Этап 4.4.2.2.2.2.1.2
Разделим на .
Этап 4.4.3
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.4.3.1
Приравняем к .
Этап 4.4.3.2
Добавим к обеим частям уравнения.
Этап 4.4.4
Окончательным решением являются все значения, при которых верно.
Этап 5
Исключим решения, которые не делают истинным.