Математический анализ Примеры

Risolvere per x натуральный логарифм x-2+ натуральный логарифм 2x-3=2 натуральный логарифм x
Этап 1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.1
Используем свойства произведения логарифмов: .
Этап 1.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 1.2.1
Применим свойство дистрибутивности.
Этап 1.2.2
Применим свойство дистрибутивности.
Этап 1.2.3
Применим свойство дистрибутивности.
Этап 1.3
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.3.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 1.3.1.2
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 1.3.1.2.1
Перенесем .
Этап 1.3.1.2.2
Умножим на .
Этап 1.3.1.3
Перенесем влево от .
Этап 1.3.1.4
Умножим на .
Этап 1.3.1.5
Умножим на .
Этап 1.3.2
Вычтем из .
Этап 2
Упростим путем переноса под логарифм.
Этап 3
Чтобы уравнение было равносильным, аргументы логарифмов с обеих сторон уравнения должны быть равными.
Этап 4
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.1
Перенесем все члены с в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 4.1.1
Вычтем из обеих частей уравнения.
Этап 4.1.2
Вычтем из .
Этап 4.2
Разложим на множители, используя метод группировки.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 4.2.2
Запишем разложение на множители, используя данные целые числа.
Этап 4.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 4.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.4.1
Приравняем к .
Этап 4.4.2
Добавим к обеим частям уравнения.
Этап 4.5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.5.1
Приравняем к .
Этап 4.5.2
Добавим к обеим частям уравнения.
Этап 4.6
Окончательным решением являются все значения, при которых верно.
Этап 5
Исключим решения, которые не делают истинным.