Математический анализ Примеры

Risolvere per x натуральный логарифм x=1/3*( натуральный логарифм 16+2 натуральный логарифм 2)
Этап 1
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 1.1.1
Применим свойство дистрибутивности.
Этап 1.1.2
Объединим и .
Этап 1.1.3
Умножим .
Нажмите для увеличения количества этапов...
Этап 1.1.3.1
Объединим и .
Этап 1.1.3.2
Объединим и .
Этап 2
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 2.1
Умножим каждый член на .
Этап 2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Перенесем влево от .
Этап 2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.3.1.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.3.1.1.1
Сократим общий множитель.
Этап 2.3.1.1.2
Перепишем это выражение.
Этап 2.3.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.3.1.2.1
Сократим общий множитель.
Этап 2.3.1.2.2
Перепишем это выражение.
Этап 3
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.1
Упростим путем переноса под логарифм.
Этап 4
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 4.1.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.1.1.1
Упростим путем переноса под логарифм.
Этап 4.1.1.2
Возведем в степень .
Этап 4.1.2
Используем свойства произведения логарифмов: .
Этап 4.1.3
Умножим на .
Этап 5
Чтобы уравнение было равносильным, аргументы логарифмов с обеих сторон уравнения должны быть равными.
Этап 6
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.1
Вычтем из обеих частей уравнения.
Этап 6.2
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Перепишем в виде .
Этап 6.2.2
Поскольку оба члена являются полными кубами, выполним разложение на множители, используя формулу разности кубов, , где и .
Этап 6.2.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 6.2.3.1
Перенесем влево от .
Этап 6.2.3.2
Возведем в степень .
Этап 6.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 6.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.4.1
Приравняем к .
Этап 6.4.2
Добавим к обеим частям уравнения.
Этап 6.5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.5.1
Приравняем к .
Этап 6.5.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.5.2.1
Используем формулу для нахождения корней квадратного уравнения.
Этап 6.5.2.2
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 6.5.2.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 6.5.2.3.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 6.5.2.3.1.1
Возведем в степень .
Этап 6.5.2.3.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 6.5.2.3.1.2.1
Умножим на .
Этап 6.5.2.3.1.2.2
Умножим на .
Этап 6.5.2.3.1.3
Вычтем из .
Этап 6.5.2.3.1.4
Перепишем в виде .
Этап 6.5.2.3.1.5
Перепишем в виде .
Этап 6.5.2.3.1.6
Перепишем в виде .
Этап 6.5.2.3.1.7
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 6.5.2.3.1.7.1
Вынесем множитель из .
Этап 6.5.2.3.1.7.2
Перепишем в виде .
Этап 6.5.2.3.1.8
Вынесем члены из-под знака корня.
Этап 6.5.2.3.1.9
Перенесем влево от .
Этап 6.5.2.3.2
Умножим на .
Этап 6.5.2.3.3
Упростим .
Этап 6.5.2.4
Окончательный ответ является комбинацией обоих решений.
Этап 6.6
Окончательным решением являются все значения, при которых верно.