Введите задачу...
Математический анализ Примеры
Этап 1
Умножим обе части на .
Этап 2
Этап 2.1
Упростим левую часть.
Этап 2.1.1
Сократим общий множитель .
Этап 2.1.1.1
Сократим общий множитель.
Этап 2.1.1.2
Перепишем это выражение.
Этап 2.2
Упростим правую часть.
Этап 2.2.1
Упростим .
Этап 2.2.1.1
Применим свойство дистрибутивности.
Этап 2.2.1.2
Сократим общий множитель .
Этап 2.2.1.2.1
Вынесем множитель из .
Этап 2.2.1.2.2
Сократим общий множитель.
Этап 2.2.1.2.3
Перепишем это выражение.
Этап 2.2.1.3
Перенесем влево от .
Этап 3
Этап 3.1
Перенесем все члены с в левую часть уравнения.
Этап 3.1.1
Вычтем из обеих частей уравнения.
Этап 3.1.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3.1.3
Объединим и .
Этап 3.1.4
Объединим числители над общим знаменателем.
Этап 3.1.5
Упростим числитель.
Этап 3.1.5.1
Перенесем влево от .
Этап 3.1.5.2
Вычтем из .
Этап 3.2
Умножим обе части уравнения на .
Этап 3.3
Упростим обе части уравнения.
Этап 3.3.1
Упростим левую часть.
Этап 3.3.1.1
Упростим .
Этап 3.3.1.1.1
Объединим.
Этап 3.3.1.1.2
Сократим общий множитель .
Этап 3.3.1.1.2.1
Сократим общий множитель.
Этап 3.3.1.1.2.2
Перепишем это выражение.
Этап 3.3.1.1.3
Сократим общий множитель .
Этап 3.3.1.1.3.1
Сократим общий множитель.
Этап 3.3.1.1.3.2
Разделим на .
Этап 3.3.2
Упростим правую часть.
Этап 3.3.2.1
Упростим .
Этап 3.3.2.1.1
Сократим общий множитель .
Этап 3.3.2.1.1.1
Вынесем множитель из .
Этап 3.3.2.1.1.2
Сократим общий множитель.
Этап 3.3.2.1.1.3
Перепишем это выражение.
Этап 3.3.2.1.2
Умножим на .
Этап 3.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 3.5
Упростим .
Этап 3.5.1
Перепишем в виде .
Этап 3.5.1.1
Вынесем множитель из .
Этап 3.5.1.2
Перепишем в виде .
Этап 3.5.1.3
Добавим круглые скобки.
Этап 3.5.2
Вынесем члены из-под знака корня.
Этап 3.6
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 3.6.1
Сначала с помощью положительного значения найдем первое решение.
Этап 3.6.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 3.6.3
Полное решение является результатом как положительных, так и отрицательных частей решения.