Введите задачу...
Математический анализ Примеры
Этап 1
Вычтем из обеих частей неравенства.
Этап 2
Преобразуем неравенство в уравнение.
Этап 3
Этап 3.1
Вынесем множитель из .
Этап 3.1.1
Вынесем множитель из .
Этап 3.1.2
Вынесем множитель из .
Этап 3.1.3
Вынесем множитель из .
Этап 3.1.4
Вынесем множитель из .
Этап 3.1.5
Вынесем множитель из .
Этап 3.2
Разложим на множители.
Этап 3.2.1
Разложим на множители методом группировки
Этап 3.2.1.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Этап 3.2.1.1.1
Вынесем множитель из .
Этап 3.2.1.1.2
Запишем как плюс
Этап 3.2.1.1.3
Применим свойство дистрибутивности.
Этап 3.2.1.2
Вынесем наибольший общий делитель из каждой группы.
Этап 3.2.1.2.1
Сгруппируем первые два члена и последние два члена.
Этап 3.2.1.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 3.2.1.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 3.2.2
Избавимся от ненужных скобок.
Этап 4
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 5
Приравняем к .
Этап 6
Этап 6.1
Приравняем к .
Этап 6.2
Решим относительно .
Этап 6.2.1
Вычтем из обеих частей уравнения.
Этап 6.2.2
Разделим каждый член на и упростим.
Этап 6.2.2.1
Разделим каждый член на .
Этап 6.2.2.2
Упростим левую часть.
Этап 6.2.2.2.1
Сократим общий множитель .
Этап 6.2.2.2.1.1
Сократим общий множитель.
Этап 6.2.2.2.1.2
Разделим на .
Этап 6.2.2.3
Упростим правую часть.
Этап 6.2.2.3.1
Вынесем знак минуса перед дробью.
Этап 7
Этап 7.1
Приравняем к .
Этап 7.2
Решим относительно .
Этап 7.2.1
Добавим к обеим частям уравнения.
Этап 7.2.2
Разделим каждый член на и упростим.
Этап 7.2.2.1
Разделим каждый член на .
Этап 7.2.2.2
Упростим левую часть.
Этап 7.2.2.2.1
Сократим общий множитель .
Этап 7.2.2.2.1.1
Сократим общий множитель.
Этап 7.2.2.2.1.2
Разделим на .
Этап 8
Окончательным решением являются все значения, при которых верно.
Этап 9
Используем каждый корень для создания контрольных интервалов.
Этап 10
Этап 10.1
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 10.1.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 10.1.2
Заменим на в исходном неравенстве.
Этап 10.1.3
Левая часть меньше правой части , значит, данное утверждение всегда истинно.
True
True
Этап 10.2
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 10.2.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 10.2.2
Заменим на в исходном неравенстве.
Этап 10.2.3
Левая часть не меньше правой части , значит, данное утверждение ложно.
False
False
Этап 10.3
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 10.3.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 10.3.2
Заменим на в исходном неравенстве.
Этап 10.3.3
Левая часть меньше правой части , значит, данное утверждение всегда истинно.
True
True
Этап 10.4
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 10.4.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 10.4.2
Заменим на в исходном неравенстве.
Этап 10.4.3
Левая часть не меньше правой части , значит, данное утверждение ложно.
False
False
Этап 10.5
Сравним интервалы, чтобы определить, какие из них удовлетворяют исходному неравенству.
Истина
Ложь
Истина
Ложь
Истина
Ложь
Истина
Ложь
Этап 11
Решение состоит из всех истинных интервалов.
или
Этап 12
Результат можно представить в различном виде.
Форма неравенства:
Интервальное представление:
Этап 13