Математический анализ Примеры

Этап 1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.1
Чтобы применить цепное правило, зададим как .
Этап 1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3
Заменим все вхождения на .
Этап 2
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3
Поскольку является константой относительно , производная по равна .
Этап 2.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.5
Умножим на .
Этап 2.6
Поскольку является константой относительно , производная относительно равна .
Этап 2.7
Добавим и .
Этап 3
Упростим.
Нажмите для увеличения количества этапов...
Этап 3.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 3.2
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Объединим и .
Этап 3.2.2
Вынесем знак минуса перед дробью.
Этап 3.3
Изменим порядок множителей в .
Этап 3.4
Применим свойство дистрибутивности.
Этап 3.5
Умножим на .
Этап 3.6
Умножим на .
Этап 3.7
Умножим на .
Этап 3.8
Перенесем влево от .
Этап 3.9
Вынесем множитель из .
Этап 3.10
Перепишем в виде .
Этап 3.11
Вынесем множитель из .
Этап 3.12
Перепишем в виде .
Этап 3.13
Вынесем знак минуса перед дробью.