Математический анализ Примеры

Этап 1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 3
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 3.1
По правилу суммы производная по имеет вид .
Этап 3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3
Поскольку является константой относительно , производная по равна .
Этап 3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.5
Умножим на .
Этап 3.6
Поскольку является константой относительно , производная относительно равна .
Этап 3.7
Добавим и .
Этап 4
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.1
Применим свойство дистрибутивности.
Этап 4.2
Применим свойство дистрибутивности.
Этап 4.3
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Перенесем влево от .
Этап 4.3.2
Добавим и .
Нажмите для увеличения количества этапов...
Этап 4.3.2.1
Перенесем .
Этап 4.3.2.2
Добавим и .
Этап 4.3.3
Добавим и .
Этап 4.4
Изменим порядок членов.
Этап 4.5
Изменим порядок множителей в .