Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Чтобы применить цепное правило, зададим как .
Этап 1.2
Производная по равна .
Этап 1.3
Заменим все вхождения на .
Этап 2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 3
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 4
Этап 4.1
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.2
Умножим на .
Этап 5
Этап 5.1
Применим свойство дистрибутивности.
Этап 5.2
Объединим термины.
Этап 5.2.1
Объединим и .
Этап 5.2.2
Объединим и .
Этап 5.2.3
Объединим и .
Этап 5.2.4
Сократим общий множитель .
Этап 5.2.4.1
Сократим общий множитель.
Этап 5.2.4.2
Перепишем это выражение.
Этап 5.2.5
Сократим общий множитель .
Этап 5.2.5.1
Сократим общий множитель.
Этап 5.2.5.2
Разделим на .
Этап 5.2.6
Объединим и .
Этап 5.2.7
Сократим общий множитель .
Этап 5.2.7.1
Сократим общий множитель.
Этап 5.2.7.2
Перепишем это выражение.
Этап 5.3
Изменим порядок членов.