Введите задачу...
Математический анализ Примеры
Этап 1
Запишем в виде функции.
Этап 2
Этап 2.1
Найдем вторую производную.
Этап 2.1.1
Найдем первую производную.
Этап 2.1.1.1
По правилу суммы производная по имеет вид .
Этап 2.1.1.2
Найдем значение .
Этап 2.1.1.2.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 2.1.1.2.1.1
Чтобы применить цепное правило, зададим как .
Этап 2.1.1.2.1.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 2.1.1.2.1.3
Заменим все вхождения на .
Этап 2.1.1.2.2
Поскольку является константой относительно , производная по равна .
Этап 2.1.1.2.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.1.2.4
Умножим на .
Этап 2.1.1.2.5
Перенесем влево от .
Этап 2.1.1.3
Найдем значение .
Этап 2.1.1.3.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 2.1.1.3.1.1
Чтобы применить цепное правило, зададим как .
Этап 2.1.1.3.1.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 2.1.1.3.1.3
Заменим все вхождения на .
Этап 2.1.1.3.2
Поскольку является константой относительно , производная по равна .
Этап 2.1.1.3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.1.3.4
Умножим на .
Этап 2.1.1.3.5
Перенесем влево от .
Этап 2.1.1.3.6
Перепишем в виде .
Этап 2.1.2
Найдем вторую производную.
Этап 2.1.2.1
По правилу суммы производная по имеет вид .
Этап 2.1.2.2
Найдем значение .
Этап 2.1.2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.1.2.2.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 2.1.2.2.2.1
Чтобы применить цепное правило, зададим как .
Этап 2.1.2.2.2.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 2.1.2.2.2.3
Заменим все вхождения на .
Этап 2.1.2.2.3
Поскольку является константой относительно , производная по равна .
Этап 2.1.2.2.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.2.2.5
Умножим на .
Этап 2.1.2.2.6
Перенесем влево от .
Этап 2.1.2.2.7
Умножим на .
Этап 2.1.2.3
Найдем значение .
Этап 2.1.2.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.1.2.3.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 2.1.2.3.2.1
Чтобы применить цепное правило, зададим как .
Этап 2.1.2.3.2.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 2.1.2.3.2.3
Заменим все вхождения на .
Этап 2.1.2.3.3
Поскольку является константой относительно , производная по равна .
Этап 2.1.2.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.2.3.5
Умножим на .
Этап 2.1.2.3.6
Перенесем влево от .
Этап 2.1.2.3.7
Перепишем в виде .
Этап 2.1.2.3.8
Умножим на .
Этап 2.1.2.3.9
Умножим на .
Этап 2.1.3
Вторая производная по равна .
Этап 2.2
Приравняем вторую производную к , затем найдем решение уравнения .
Этап 2.2.1
Пусть вторая производная равна .
Этап 2.2.2
Построим график каждой части уравнения. Решение — абсцисса (координата x) точки пересечения.
Нет решения
Нет решения
Нет решения
Этап 3
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Интервальное представление:
Обозначение построения множества:
Этап 4
График вогнут вверх, так как вторая производная положительна.
График имеет вогнутость вверх.
Этап 5