Введите задачу...
Математический анализ Примеры
Этап 1
По правилу суммы производная по имеет вид .
Этап 2
Этап 2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3
Умножим на .
Этап 3
Этап 3.1
Объединим и .
Этап 3.2
Поскольку является константой относительно , производная по равна .
Этап 3.3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 3.3.1
Чтобы применить цепное правило, зададим как .
Этап 3.3.2
Производная по равна .
Этап 3.3.3
Заменим все вхождения на .
Этап 3.4
Поскольку является константой относительно , производная по равна .
Этап 3.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.6
Умножим на .
Этап 3.7
Объединим и .
Этап 3.8
Умножим на .
Этап 3.9
Перенесем влево от .
Этап 3.10
Сократим общий множитель и .
Этап 3.10.1
Вынесем множитель из .
Этап 3.10.2
Сократим общие множители.
Этап 3.10.2.1
Вынесем множитель из .
Этап 3.10.2.2
Сократим общий множитель.
Этап 3.10.2.3
Перепишем это выражение.
Этап 3.11
Сократим общий множитель .
Этап 3.11.1
Сократим общий множитель.
Этап 3.11.2
Разделим на .