Математический анализ Примеры

Этап 1
Поскольку является константой относительно , производная по равна .
Этап 2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3
Заменим все вхождения на .
Этап 3
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 3.1
Объединим и .
Этап 3.2
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Объединим и .
Этап 3.2.2
Перенесем влево от .
Этап 3.3
По правилу суммы производная по имеет вид .
Этап 3.4
Поскольку является константой относительно , производная по равна .
Этап 3.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.6
Умножим на .
Этап 3.7
Поскольку является константой относительно , производная относительно равна .
Этап 3.8
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 3.8.1
Добавим и .
Этап 3.8.2
Объединим и .
Этап 3.8.3
Умножим на .
Этап 3.8.4
Объединим и .
Этап 3.8.5
Изменим порядок множителей в .