Математический анализ Примеры

Этап 1
Перепишем в виде .
Этап 2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3
Заменим все вхождения на .
Этап 3
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 3.1
По правилу суммы производная по имеет вид .
Этап 3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3
Поскольку является константой относительно , производная по равна .
Этап 3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.5
Умножим на .
Этап 3.6
Поскольку является константой относительно , производная относительно равна .
Этап 3.7
Добавим и .
Этап 4
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 4.2
Изменим порядок множителей в .
Этап 4.3
Применим свойство дистрибутивности.
Этап 4.4
Умножим на .
Этап 4.5
Умножим на .
Этап 4.6
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 4.6.1
Разложим на множители, используя метод группировки.
Нажмите для увеличения количества этапов...
Этап 4.6.1.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 4.6.1.2
Запишем разложение на множители, используя данные целые числа.
Этап 4.6.2
Применим правило умножения к .
Этап 4.7
Умножим на .
Этап 4.8
Вынесем множитель из .
Этап 4.9
Перепишем в виде .
Этап 4.10
Вынесем множитель из .
Этап 4.11
Перепишем в виде .
Этап 4.12
Вынесем знак минуса перед дробью.