Математический анализ Примеры

Этап 1
Поскольку является константой относительно , производная по равна .
Этап 2
Применим основные правила для показателей степени.
Нажмите для увеличения количества этапов...
Этап 2.1
Перепишем в виде .
Этап 2.2
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Применим правило степени и перемножим показатели, .
Этап 2.2.2
Объединим и .
Этап 2.2.3
Вынесем знак минуса перед дробью.
Этап 3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 5
Объединим и .
Этап 6
Объединим числители над общим знаменателем.
Этап 7
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 7.1
Умножим на .
Этап 7.2
Вычтем из .
Этап 8
Вынесем знак минуса перед дробью.
Этап 9
Объединим и .
Этап 10
Умножим на .
Этап 11
Объединим и .
Этап 12
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 13
Вынесем множитель из .
Этап 14
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 14.1
Вынесем множитель из .
Этап 14.2
Сократим общий множитель.
Этап 14.3
Перепишем это выражение.
Этап 15
Вынесем знак минуса перед дробью.