Математический анализ Примеры

Trovare la Derivata - d/dx y = natural log of (x^2+1)^3
Этап 1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.1
Чтобы применить цепное правило, зададим как .
Этап 1.2
Производная по равна .
Этап 1.3
Заменим все вхождения на .
Этап 2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3
Заменим все вхождения на .
Этап 3
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 3.1
Объединим и .
Этап 3.2
Упростим члены.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Объединим и .
Этап 3.2.2
Перенесем влево от .
Этап 3.2.3
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 3.2.3.1
Вынесем множитель из .
Этап 3.2.3.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 3.2.3.2.1
Вынесем множитель из .
Этап 3.2.3.2.2
Сократим общий множитель.
Этап 3.2.3.2.3
Перепишем это выражение.
Этап 3.3
По правилу суммы производная по имеет вид .
Этап 3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.5
Поскольку является константой относительно , производная относительно равна .
Этап 3.6
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 3.6.1
Добавим и .
Этап 3.6.2
Объединим и .
Этап 3.6.3
Умножим на .
Этап 3.6.4
Объединим и .