Математический анализ Примеры

Trovare la Derivata - d/dx (x^2+2x-35)/(x^2-25)
Этап 1
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 2
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3
Поскольку является константой относительно , производная по равна .
Этап 2.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.5
Умножим на .
Этап 2.6
Поскольку является константой относительно , производная относительно равна .
Этап 2.7
Добавим и .
Этап 2.8
По правилу суммы производная по имеет вид .
Этап 2.9
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.10
Поскольку является константой относительно , производная относительно равна .
Этап 2.11
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 2.11.1
Добавим и .
Этап 2.11.2
Умножим на .
Этап 3
Упростим.
Нажмите для увеличения количества этапов...
Этап 3.1
Применим свойство дистрибутивности.
Этап 3.2
Применим свойство дистрибутивности.
Этап 3.3
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.3.1.1
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 3.3.1.1.1
Применим свойство дистрибутивности.
Этап 3.3.1.1.2
Применим свойство дистрибутивности.
Этап 3.3.1.1.3
Применим свойство дистрибутивности.
Этап 3.3.1.2
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.3.1.2.1
Перепишем, используя свойство коммутативности умножения.
Этап 3.3.1.2.2
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 3.3.1.2.2.1
Перенесем .
Этап 3.3.1.2.2.2
Умножим на .
Нажмите для увеличения количества этапов...
Этап 3.3.1.2.2.2.1
Возведем в степень .
Этап 3.3.1.2.2.2.2
Применим правило степени для объединения показателей.
Этап 3.3.1.2.2.3
Добавим и .
Этап 3.3.1.2.3
Перенесем влево от .
Этап 3.3.1.2.4
Умножим на .
Этап 3.3.1.2.5
Умножим на .
Этап 3.3.1.3
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 3.3.1.3.1
Перенесем .
Этап 3.3.1.3.2
Умножим на .
Нажмите для увеличения количества этапов...
Этап 3.3.1.3.2.1
Возведем в степень .
Этап 3.3.1.3.2.2
Применим правило степени для объединения показателей.
Этап 3.3.1.3.3
Добавим и .
Этап 3.3.1.4
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 3.3.1.4.1
Перенесем .
Этап 3.3.1.4.2
Умножим на .
Этап 3.3.1.5
Умножим на .
Этап 3.3.1.6
Умножим на .
Этап 3.3.2
Объединим противоположные члены в .
Нажмите для увеличения количества этапов...
Этап 3.3.2.1
Вычтем из .
Этап 3.3.2.2
Добавим и .
Этап 3.3.3
Вычтем из .
Этап 3.3.4
Добавим и .
Этап 3.4
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 3.4.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 3.4.1.1
Вынесем множитель из .
Этап 3.4.1.2
Вынесем множитель из .
Этап 3.4.1.3
Вынесем множитель из .
Этап 3.4.1.4
Вынесем множитель из .
Этап 3.4.1.5
Вынесем множитель из .
Этап 3.4.2
Разложим на множители методом группировки
Нажмите для увеличения количества этапов...
Этап 3.4.2.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Нажмите для увеличения количества этапов...
Этап 3.4.2.1.1
Вынесем множитель из .
Этап 3.4.2.1.2
Запишем как плюс
Этап 3.4.2.1.3
Применим свойство дистрибутивности.
Этап 3.4.2.2
Вынесем наибольший общий делитель из каждой группы.
Нажмите для увеличения количества этапов...
Этап 3.4.2.2.1
Сгруппируем первые два члена и последние два члена.
Этап 3.4.2.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 3.4.2.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 3.4.3
Объединим показатели степеней.
Нажмите для увеличения количества этапов...
Этап 3.4.3.1
Вынесем множитель из .
Этап 3.4.3.2
Перепишем в виде .
Этап 3.4.3.3
Вынесем множитель из .
Этап 3.4.3.4
Перепишем в виде .
Этап 3.4.3.5
Возведем в степень .
Этап 3.4.3.6
Возведем в степень .
Этап 3.4.3.7
Применим правило степени для объединения показателей.
Этап 3.4.3.8
Добавим и .
Этап 3.4.3.9
Умножим на .
Этап 3.5
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 3.5.1
Перепишем в виде .
Этап 3.5.2
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 3.5.3
Применим правило умножения к .
Этап 3.6
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.6.1
Сократим общий множитель.
Этап 3.6.2
Перепишем это выражение.
Этап 3.7
Вынесем знак минуса перед дробью.